Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T04:24:53.684Z Has data issue: false hasContentIssue false

K-Theory of Non-Commutative Spheres Arising from the Fourier Automorphism

Published online by Cambridge University Press:  20 November 2018

Samuel G. Walters*
Affiliation:
Department of Mathematics and Computer Science The University of Northern British Columbia Prince George, BC V2N 4Z9, email: walters@hilbert.unbc.ca website: http://hilbert.unbc.ca/walters
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For a dense ${{G}_{\delta }}$ set of real parameters $\theta $ in [0, 1] (containing the rationals) it is shown that the group ${{K}_{0}}({{A}_{\theta }}\,{{\rtimes }_{\sigma }}\,{{\mathbb{Z}}_{4}})$ is isomorphic to ${{\mathbb{Z}}^{9}}$, where ${{A}_{\theta }}$ is the rotation ${{\text{C}}^{*}}$-algebra generated by unitaries $U,\,V$ satisfying $VU\,=\,{{e}^{2\pi i\theta }}UV$ and $\sigma $ is the Fourier automorphism of ${{A}_{\theta }}$ defined by $\sigma (U)\,=\,V,\,\sigma (V)\,=\,{{U}^{-1}}$. More precisely, an explicit basis for ${{K}_{0}}$ consisting of nine canonical modules is given. (A slight generalization of this result is also obtained for certain separable continuous fields of unital ${{\text{C}}^{*}}$-algebras over [0, 1].) The Connes Chern character $\text{ch:}\,{{K}_{0}}({{A}_{\theta }}\,{{\rtimes }_{\sigma }}\,{{\mathbb{Z}}_{4}})\,\to \,{{H}^{\text{ev}}}{{({{A}_{\theta \,}}{{\rtimes }_{\sigma }}\,{{\mathbb{Z}}_{4}})}^{*}}$ is shown to be injective for a dense ${{G}_{\delta }}$ set of parameters $\theta $. The main computational tool in this paper is a group homomorphism $\mathbf{T}\,\text{:}\,{{K}_{0}}({{A}_{\theta }}\,{{\rtimes }_{\sigma }}\,{{\mathbb{Z}}_{4}})\,\to \,{{\mathbb{R}}^{8}}\,\times \,\mathbb{Z}$ obtained from the Connes Chern character by restricting the functionals in its codomain to a certain nine-dimensional subspace of ${{H}^{\text{ev}}}({{A}_{\theta }}\,{{\rtimes }_{\sigma }}\,{{\mathbb{Z}}_{4}})$. The range of $\mathbf{T}$ is fully determined for each $\theta $. (We conjecture that this subspace is all of ${{H}^{\text{ev}}}$.)

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2001

References

[1] Bratteli, O., Elliott, G. A., Evans, D. E. and Kishimoto, A., Non-commutative spheres I. Internat. J. Math. (2) 2 (1990), 139166.Google Scholar
[2] Bratteli, O., Elliott, G. A., Evans, D. E. and Kishimoto, A., Non-commutative spheres II: rational rotations. J. Operator Theory 27 (1992), 5385.Google Scholar
[3] Bratteli, O. and Kishimoto, A., Non-commutative spheres III. Irrational Rotations. Comm. Math. Phys. 147 (1992), 605624.Google Scholar
[4] Connes, A., C* algèbre et géométrie différentielle.C. R. Acad. Sci. Paris Ser. A–B 290 (1980), 599604.Google Scholar
[5] Connes, A., Noncommutative Geometry. Academic Press, 1994.Google Scholar
[6] Farsi, C. and Watling, N., Fixed point subalgebras of the rotation algebra. C.R. Math. Rep. Acad. Sci. Canada (2) 13 (1991), 7580.Google Scholar
[7] Farsi, C. and Watling, N., Quartic algebras. Canad. J. Math. (6) 44 (1992), 11671191.Google Scholar
[8] Grosswald, E., Representations of integers as sums of squares. Springer-Verlag, New York, 1985.Google Scholar
[9] Kumjian, A., On the K-theory of the symmetrized non-commutative torus. C. R.Math. Rep. Acad. Sci. Canada (3) 12 (1990), 8789.Google Scholar
[10] Pimsner, M. and Voiculescu, D., Exact sequences for K-groups and Ext-groups of certain crossed product C*-algebras. J. Operator Theory 4 (1980), 93118.Google Scholar
[11] Pimsner, M. and Voiculescu, D., K-groups of reduced crossed products by free groups. J. Operator Theory 8 (1982), 131156.Google Scholar
[12] Rosenberg, J., Appendix to ‘Crossed products of UHF algebras by product type actions’. Duke Math. J. (1) 46 (1979), 2526.Google Scholar
[13] Walters, S. G., Projective modules over the non-commutative sphere. J. LondonMath. Soc. (2) 51 (1995), 589602.Google Scholar
[14] Walters, S. G., Inductive limit automorphisms of the irrational rotation algebra. Comm. Math. Phys. 171 (1995), 365381.Google Scholar
[15] Walters, S. G., Chern characters of Fourier modules. Canad. J. Math. (3) 52 (2000), 633672.Google Scholar
[16] Walters, S. G., On the irrational quartic algebra. C.R. Math. Rep. Acad. Sci. Canada (3) 21 (1999), 9196.Google Scholar
[17] Walters, S. G., Gluing Hilbert modules in a continuous field of C*-algebras. Unpublished note, 1998.Google Scholar
[18] Walters, S. G., On the inductive limit structure of order four automorphisms of the irrational rotation algebra. Preprint, 2000, 8 pages.Google Scholar