No CrossRef data available.
Article contents
L-Functoriality for Local Theta Correspondence of Supercuspidal Representations with Unipotent Reduction
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
The preservation principle of local theta correspondences of reductive dual pairs over a $p$-adic field predicts the existence of a sequence of irreducible supercuspidal representations of classical groups. Adams and Harris-Kudla-Sweet have a conjecture about the Langlands parameters for the sequence of supercuspidal representations. In this paper we prove modified versions of their conjectures for the case of supercuspidal representations with unipotent reduction.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2017
References
[Ada89]
Adams, J., L-functoriality for dual pairs.
Orbites unipotentes et représentations II Astérisque
171–172(1989), 85-129.Google Scholar
[AM93]
Adams, J. and Moy, A., Unipotent representations and reductive dual pairs over finite fields.
Trans. Amer. Math. Soc.
340(1993), 309–321. http://dx.doi.org/10.1090/S0002-9947-1993-1173855-4
Google Scholar
[Aub91]
Aubert, A.M., Description de la correspondance de Howe en termes de classification de Kazhdan-Lusztig.
Invent. Math.
103(1991), 379–415. http://dx.doi.Org/10.1007/BF01239519
Google Scholar
[AMR96]
Aubert, A.-M., Michel, J., and Rouquier, R., Correspondance de Howe pour les groupes réductifs sur les corps finis.
Duke Math. J.
83(1996), 353–397. http://dx.doi.org/10.1215/S0012-7094-96-08312-X
Google Scholar
[Bor79]
Borel, A., Automorphic L-functions. In: Automorphic forms, representations and L-functions II, Proc. Sympos. Pure Math., 33, American Mathematical Society, Providence,RI, 1979, pp. 27–61.Google Scholar
[DL76]
Deligne, P. and Lusztig, G., Representations of reductive groups over finite fields.
Ann. of Math. (2) 103(1976), 103–161. http://dx.doi.org/10.2307/1971021
Google Scholar
[Gér77]
Gérardin, P., Weil representations associated to finite fields, J. Algebra
46 (1977), 54–101. http://dx.doi.Org/10.1016/0021-8693(77)90394-5
Google Scholar
[HKS96]
Harris, M., Kudla, S., and Sweet, W., Theta dichotomy for unitary groups.
J. Amer. Math. Soc.
9(1996), 941–1004. http://dx.doi.org/10.1090/S0894-0347-96-00198-1
Google Scholar
[Kud86]
Kudla, S., On the local theta correspondence.
Invent. Math.
83(1986), 229–255. http://dx.doi.org/10.1007/BF01388961
Google Scholar
[KR94]
Kudla, S. and Rallis, S., A regularized Siegel-Weil formula: the first term identity.
Ann. of Math. (2) 140(1994), 1–80. http://dx.doi.org/10.2307/2118540
Google Scholar
[KR05]
Kudla, S., On first occurrence in the local theta correspondence.
In: Automorphic representations, L-functions and applications: progress and prospects, Ohio State Univ. Math. Res. Inst. Publ., 11, de Gruyter, Berlin, 2005, pp. 273–308. http://dx.doi.Org/10.1515/9783110892703.273
Google Scholar
[Lus77]
Lusztig, G., Irreducible representations of finite classical groups.
Invent. Math.
43(1977), 125–175. http://dx.doi.Org/10.1007/BF01390002
Google Scholar
[Lus83]
Lusztig, G., Some examples of square integrable representations of semisimple p-adic groups.
Trans. Amer. Math. Soc.
277(1983), 623–653. http://dx.doi.Org/10.2307/1999228
Google Scholar
[Lus95]
Lusztig, G., Classification of unipotent representations of simple p-adic groups.
Internat. Math. Res. Notices
11(1995), 517–589. http://dx.doi.Org/10.1155/S1073792895000353
Google Scholar
[LusO2]
Lusztig, G.
,Classification of unipotent representations of simple p-adic groups. II.Represent.Theory
6(2002), 243–289. http://dx.doi.Org/10.1090/S1088-4165-02-00173-5
Google Scholar
[Moeg05]
Moeglin, C., Stabilité pour les représentations elliptiques de réduction unipotente: le cas des groupes unitaires.
In: Automorphic representations, L-functions and applications: progress and prospects, Ohio State Univ. Math. Res. Inst. Publ., 11, de Gruyter, Berlin, 2005, pp. 361–402. http://dx.doi.Org/10.1515/9783110892703.361
Google Scholar
[Mor96]
Morris, L., Tamely ramified supercuspidal representations.
Ann. Sci. École Norm. Sup. (4) 29(1996), 639–667.Google Scholar
[Mor99]
Morris, L., Level zero G-types.
Compositio Math.
118(1999), 135–157. http://dx.doi.Org/10.1023/A:1001019027614
Google Scholar
[MP96]
Moy, A. and Prasad, G., Jacquet functors and unrefined minimal K-types.
Comment Math. Helv.
71(1996), 98–121. http://dx.doi.org/10.1007/BF02566411
Google Scholar
[MVW87]
Moeglin, C., Vignéras, M.-F., and Waldspurger, J.-L., Correspondances de Howe sur un corps p-adique.
Lecture Notes in Mathematics, 1291, Springer-Verlag,
Berlin, 1987. http://dx.doi.Org/10.1OO7/BFbOO82712
Google Scholar
[MW03]
Moeglin, C. and Waldspurger, J.-L, Paquets stables de repr괥ntations tempérées et deréduction unipotente pour SO(2n + 1).
Invent. Math.
152(2003), 461–623. http://dx.doi.org/10.1007/s00222-002-0274-3
Google Scholar
[PanOl]
Pan, S.-Y., Splittings of metaplectic covers of some reductive dual pairs.
Pacific J. Math.
199(2001), 163–226. http://dx.doi.org/10.2140/pjm.2001.199.163
Google Scholar
[PanO2]
Pan, S.-Y.,Local theta correspondence of representations of depth zero and theta dichotomy.
J. Math. Soc. Japan
54(2002), 793–845. http://dx.doi.org/10.2969/jmsj71191591993
Google Scholar
[Ral82]
Rallis, S., Langlands' functoriality and the Weil representation.
Amer. J. Math.
104(1982), 469–515. http://dx.doi.org/10.2307/2374151
Google Scholar
[Sri79]
Srinivasan, B., Weil representations of finite classical groups.
Invent. Math.
51(1979), 143–153. http://dx.doi.Org/10.1007/BF01390225
Google Scholar
[Tat79]
Tate, J., Number theoretic background. In: Automorphic forms, representations and L-functions II, Proc. Sympos. Pure Math., 33, American Mathematical Society, Providence, RI, 1979, pp. 3–26.Google Scholar
[Tit79]
Tits, J., Reductive groups over local fields.
In: Automorphic forms, representations and L-functions I, Proc. Sympos. Pure Math., 33, American Mathematical Society, Providence,RI, 1979, pp. 29–69.Google Scholar
[Wal90]
Waldspurger, J.-L., Démonstration d' conjecture de dualité de Howe dans le case péadiques, p 2. In: Festschrift in honor of I. PiatetskiéShapiro on the occasion of his sixtieth birthday, Part I, Israel Math. Conf. Proc, 2, Weizmann, Jerusalem, 1990,nn. 267–324.Google Scholar
You have
Access