Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-15T23:37:48.997Z Has data issue: false hasContentIssue false

Lifting Inductive and Projective Limits

Published online by Cambridge University Press:  20 November 2018

Johann Sonner*
Affiliation:
University of South Carolina, Columbia, S.C.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, which is the fourth in a series of articles (11, 12, 13) on universal solutions in categories, a relationship between inductive limits and final structures (or projective limits and initial structures) is studied. The problems to be encountered are illustrated by the following example.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1967

References

1. Andreotti, A., Généralités sur les catégories abéliennes, (Séminaire A. Grothendieck, 1957).Google Scholar
2. Bourbaki, N., Théorie des ensembles, 2nd éd., chap. 3 (Paris, 1963).Google Scholar
3. Bourbaki, N., Théorie des ensembles, chap. 4 (Paris, 1957).Google Scholar
4. Chevalley, C., Fundamental concepts of algebra (New York, 1956).Google Scholar
5. Ehresmann, C., Catégories differentiables et géométrie différentielle, Lecture notes, Université de Montréal, 1961.Google Scholar
6. Ehresmann, C., Structures quotient, Comm. Math. Helvetici, 38 (1964), 219283.Google Scholar
7. Eilenberg, S., Foundations of fiber bundles, Lecture notes, University of Chicago, 1957.Google Scholar
8. Isbell, J. R., Some remarks concerning categories and subspaces, Can. J. Math. 9 (1957), 563577.Google Scholar
9. Kurosh, A. G., The theory of groups, vol. 2, 2nd ed. (New York, 1956).Google Scholar
10. Maclane, S., Categorical algebra, Colloquium Lectures given at Boulder, Colorado (Amer. Math. Soc., 1963).Google Scholar
11. Sonner, J., On the formal definition of categories, Math. Z., 80 (1962), 163176.Google Scholar
12. Sonner, J., Universal and special problems, Math. Z., 82 (1963), 200211.Google Scholar
13. Sonner, J., Universal solutions and adjoint homomorphisms, Math. Z., 85 (1964), 1420.Google Scholar
14. Sonner, J., Categories, Lecture notes, University of South Carolina, 1964.Google Scholar