Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T18:29:50.997Z Has data issue: false hasContentIssue false

Local Connectedness Of Extension Spaces

Published online by Cambridge University Press:  20 November 2018

Bernhard Banaschewski*
Affiliation:
Hamilton College, McMaster University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Introduction. An extension E* of a topological space E (that is, a space containing E as a dense subspace) determines a family of filters (u) on E, given by the traces U ∩ E of the neighbourhoods U ⊆ E* of each u ∈ E* − E. Many topological properties of an extension E* of a given space E can be related to properties of these trace filters (as we shall call them) belonging to E*.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1956

References

1. Alexandroff, P., Bikompakte Erweiterung topologischer Räurne, Mat. Sbornik, N.S., 5 (1939), 420428.Google Scholar
2. Banaschewski, B., Ueberlagerungen von Erweiterungsräumen, to appear in Archiv der Mathematik.Google Scholar
3. Bourbaki, N., Topologie générale (Act. sci. industr., Paris).Google Scholar
4. Katětov, M., Über H-abgeschlossene und bikompakte Ràunie, Časopis Mat. Fys., 69 (1939-40), 3649.Google Scholar