Article contents
Lower Order Terms of the Discrete Minimal Riesz Energy on Smooth Closed Curves
Published online by Cambridge University Press: 20 November 2018
Abstract
We consider the problem of minimizing the energy of $N$ points repelling each other on curves in ${{\mathbb{R}}^{d}}$ with the potential ${{\left| x\,-\,y \right|}^{-s}},\,s\,\ge \,1$, where $\left| \cdot \right|$ is the Euclidean norm. For a sufficiently smooth, simple, closed, regular curve, we find the next order term in the asymptotics of the minimal s-energy. On our way, we also prove that at least for $s\,\ge \,2$, the minimal pairwise distance in optimal configurations asymptotically equals $L/N,\,N\to \,\infty $, where $L$ is the length of the curve.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2012
References
- 5
- Cited by