Article contents
Majorants in Variational Integration
Published online by Cambridge University Press: 20 November 2018
Extract
In Perron integration, majorants are usually functions of points. If the domain of definition is a Euclidean space of n dimensions, we can define a finitely additive n-dimensional majorant rectangle function by taking suitable differences of the majorant point function with respect to each of the n coordinates. The way is then open to a generalization, in that we need only suppose that the majorant rectangle function is finitely superadditive. Similarly, we need only suppose that a minorant rectangle function is finitely subadditive. These kinds of rectangle functions were used by J. Mařík (5) to prove the Fubini theorem for Perron integrals in Euclidean space of m + n dimensions. He also proved that for a function that is Perron, and absolutely Perron, integrable, the majorant and minorant rectangle functions can be taken to be finitely additive. As a result he posed the following problem.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1966
References
- 5
- Cited by