Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-16T01:25:19.243Z Has data issue: false hasContentIssue false

Measures and Tensors II

Published online by Cambridge University Press:  20 November 2018

Jesús Gil de Lamadrid*
Affiliation:
University of Minnesota, Minneapolis, Minnesota and Centre Universitaire International, Paris
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The present work is a sequel to our previous article (10) with the same title. The major theme remains the study of the relationship between tensor products of spaces of functions and vector-valued measures on a space S. In (10) S was a compact Hausdorff space. Here we extend our considerations to locally compact Hausdorff spaces. B(S) still stands for the Borel class of S.

Three types of vector-valued measures m : B(5) → E, E a Banach space, are considered here (§3), namely, weak*, weak, and strong vector measures, but the concepts of weak and strong measures coincide. This result is due to Bartle, Dunford, and Schwartz (1) for abstract vector measures, i.e. defined on an abstract σ-algebra of sets.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1966

References

1. Bartle, R. G., Dunford, N., and Schwartz, J., Weak compactness and vector measures, Can. J. Math., 7 (1955), 288305.Google Scholar
2. Dinculeanu, N., Mesures vectorielles et opérations linéaires, C. R. Acad. Sci. Paris, 246 (1958), 23272331.Google Scholar
3. Dinculeanu, N., Représentation intégrale d'opérations linéaires, III, Proc. Amer. Math. Soc, 10 (1959), 5968.Google Scholar
4. Dinculeanu, N. et Foias, C., Mesures vectorielles et opérations linéaires sur LE P , C. R. Acad. Sci. Paris, 248 (1959), 17591762.Google Scholar
5. Dinculeanu, N. et Foias, C., Sur la représentation intégrale de certains opérateurs linéaires IV. Opérateurs linéaires sur les espaces La p , Can. J. Math., 13 (1961), 529556.Google Scholar
6. Dunford, N., Integration and linear operations, Trans. Amer. Math. Soc., 40 (1936), 474494.Google Scholar
7. Dunford, N., A survey of the theory of spectral operators, Bull. Amer. Math. Soc, 64 (1958), 217274.Google Scholar
8. Dunford, N. and Schwartz, J., Linear operators, Part I (New York, 1958).Google Scholar
9. Gelfand, I., Abstrakte Funktionen und lineare Operatoren, Rec Math. (Mat. Sb.), NF, 4 (1938), 238284.Google Scholar
10. Gil de Lamadrid, J., Measures and tensors, Trans. Amer. Math. Soc, 114 (1965), 98121.Google Scholar
11. Grothendieck, A., Sur les applications linéaires faiblement compact d'espaces de type C(K), Can. J. Math., 5 (1953), 129173.Google Scholar
12. Grothendieck, A., Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc, 16 (1955).Google Scholar
13. Grothendieck, A., La théorie de Fredholm, Bull. Soc. Math. France, 84 (1956), 319384.Google Scholar
14. Halmos, P. R., Measure theory (Princeton, 1950).Google Scholar
15. Hille, E. and Phillips, R. S., Functional analysis and semi-groups (Providence, 1957).Google Scholar
16.A. and Ionescu Tulcea, C., On the lifting property, II. Representation of linear operators on spaces of LE r, 1 ≤ r < ∞ , J. Math. Mech., 11 (1962), 113195.Google Scholar
17. Kakutani, S., Concrete representations of abstract (M) spaces (A characterization of the space of continuous functions), Ann. Math. (2), 42 (1941), 9941024.Google Scholar
18. Pettis, B. J., On integration in vector spaces, Trans. Amer. Math. Soc., 44 (1938), 277304.Google Scholar
19. Schatten, R., A theory of cross spaces, Ann. Math. Studies, 26 (Princeton, 1955).Google Scholar
20. Singer, I., Linear functionals on spaces of continuous mappings of a compact Hausdorff space, into a Banach space (Russian), Rev. Math. Pures Appl., 2 (1957), 309314.Google Scholar