Published online by Cambridge University Press: 20 November 2018
Using ideas of McShane ([4, Example 3]), a detailed development of the Riemann integral in a locally compact Hausdorff space X was presented in [1]. There the Riemann integral is derived from a finitely additive volume v defined on a suitable semiring of subsets of X. Vis-à-vis the Riesz representation theorem ([8, Theorem 2.141), the integral generates a Riesz measure v in X, whose relationship to the volume v was carefully investigated in [1, Section 7].
In the present paper, we use the same setting as in [1] but produce the measure directly without introducing the Riemann integral. Specifically, we define an outer measure by means of gages and introduce a very intuitive concept of gage measurability that is different from the usual Carathéodory définition. We prove that if the outer measure is σ-finite, the resulting measure space is identical to that defined by means of the Carathéodory technique, and consequently to that of [1, Section 7]. If the outer measure is not σ-finite, we investigate the gage measurability of Carathéodory measurable sets that are σ-finite. Somewhat surprisingly, it turns out that this depends on the axioms of set theory.