Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T22:24:55.044Z Has data issue: false hasContentIssue false

Modular Forms from Codes

Published online by Cambridge University Press:  20 November 2018

David P. Maher*
Affiliation:
Worcester Polytechnic Institute, Worcester, Massachusetts
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we construct modular forms from combinatorial designs, and codes over finite fields. We construct codes from designs, and lattices from codes. Then we use the combinatorial properties of the designs and the weight (or shape) structures of the codes to study the theta functions of the associated lattices. These theta functions are shown to be modular forms for the modular group or for various congruence subgroups. The levels of the forms we examine are determined by the dimensions of the codes and the characteristics of the fields. Using the Lee polynomial of the codes we can write the theta functions as homogeneous polynomials in modified Jacobi theta functions. By extending the underlying combinatorial structure, a modular form of half-integral weight is associated with a modular form of integral weight.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1980

References

1. Assmus, E. F., Jr. and Maher, D. P., Nonexistence proofs for projective designs, to appear, American Mathematical Monthly.Google Scholar
2. Berlekamp, E. R., MacWilliams, F. J., and Sloane, N. J. A., Gleason's theorem on self-dual codes, IEEE Trans. Info. Theor. 18 (1972), 409414.Google Scholar
3. Bourbaki, N., Groups et algebres de Lie, Ch. 4, 5, and 6 (Hermann, Paris, 1968).Google Scholar
4. Bourbaki, N., Theories spectrales (Hermann, Paris, 1967).Google Scholar
5. Broué, M., Codes correcteurs d'erreurs auto-orthogonaux sur le corps à deux elements et formes quadratiques entières définies positives à discriminant -+-1, pp. 71-108 of Comptes Rendus des Journées Mathématiques de la Société Math, de France, Univ. Sci. Tech. Languedoc, Montpellier 1974. Reprinted in Discrete Math. 17 (1977), 247269.Google Scholar
6. Broué, M. and Enguehard, M., Polynômes des poids de certains codes et functions thêta de certains réseaux, Ann. Scient. Ec. Norm. Sup. 5 (1972), 157181.Google Scholar
7. Cameron, P. J. and van Lint, J. H., Graph theory, coding theory, and block designs, London Math. Soc. Lecture Note Series 10 (Cambridge Univ. Press, 1975).Google Scholar
8. Conway, J. H., A group of order 8,315,553,613,086,720,000, Bull. London Math. Soc. 1 (1969), 7988.Google Scholar
9. Eichler, M., Introduction to the theory of algebraic numbers and functions (Academic Press, N.Y., 1966).Google Scholar
10. Gleason, A. M., Weight polynomials of self-dual codes and the MacWilliams identities in: Actes Congrès Internl. de Mathématique 3, 1970 (Gauthier-Villars, Paris, 1971), 211215.Google Scholar
11. Leech, J.. Notes on sphere packings, Can. J. Math. 10 (1967), 251267.Google Scholar
12. MacWilliams, F. J., Mallows, C. L., and Sloane, N. J. A., Generalizations of Gleason s theorem on weight enumerators of self-dual codes, IEEE Trans. Info. Theor. 18 (1972), 794805.Google Scholar
13. MacWilliams, F. J., Sloane, N. J. A. and Goethals, J. M., The MacWilliams identities for nonlinear codes, Bell Syst. Tech. J. 51 (1972), 803819.Google Scholar
14. MacWilliams, F. J., Sloane, N. J. A., and Thompson, J. G., On the existence of a projective plane of Order 10, J. Combinatorial Theory 144 (1973), 6678.Google Scholar
15. MacWilliams, F. J. and Sloane, N. J. A., The theory of error correcting codes (North-Holland, Amsterdam, 1977).Google Scholar
16. Maher, D. P., Self-orthogonal codes and modular-forms, Ph.D. Thesis, Lehigh University, 1976.Google Scholar
17. Maher, D. P., Lee polynomials of codes and theta functions of lattices, Can. j . Math. 30 (1978), 738747.Google Scholar
18. Niemeier, H. V., Definite Quadratische Formen der Dimension 24 und Diskcriminante 1, J. Number Theory 5 (1973), 1942–178.Google Scholar
19. Ogg, A., Modular forms and Dirichlet series (W. A. Benjamin, Inc., N. V., 1969).Google Scholar
20. Sachar, H., Error-correcting codes associated with finite projective planes, Ph.D. dissertation, Lehigh University, 1973.Google Scholar
21. Serre, J. P., Cours d'arithmétique (Presses Univ. de France, 1970). English translation published by Springer Verlag, 1973.Google Scholar
22. Shimura, G., Introduction to the arithmetic theory of automorphic functions (Princeton University Press, Princeton, N.J., 1971).Google Scholar
23. Shimura, G., On modular forms of half-integral weight, Annals of Mathematics, 2nd Ser. 97 No. 3 (1973).Google Scholar
24. Sloane, N. J. A., Codes over G F (4) and complex lattices, J. Algebr. 52 (1978), 168181.Google Scholar
25. Tannery, J. and Molk, J., Eléments de la théorie des fonctions elliptiques, 4 vols., 2nd edition, reprinted Chelsea, N.Y. (1972).Google Scholar