Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-15T17:35:12.915Z Has data issue: false hasContentIssue false

On a Condition of J. Ohm for Integral Domains1

Published online by Cambridge University Press:  20 November 2018

Robert Gilmer*
Affiliation:
Florida State University, Tallahassee, Florida
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper originated mainly from results presented in a paper by J. Ohm (13), and, to a lesser degree, from results of Gilmer in (3). Ohm's paper is concerned with the validity of the equation (x, y)n = (xn, yn) for each pair of elements x, y of an integral domain D with identity. If D is a Prüfer domain, the above equation is valid for all x, y ϵ D (7, p. 244). Butts and Smith have shown (2) that if (x, y)2 = (x2, y2) for all x, y of the integrally closed domain D, then D is a Priifer domain.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1968

Footnotes

1.

The author was supported during the writing of this paper by Alfred P. Sloan Foundation.

References

1. Bourbaki, N., Algèbre commutative, Vol. XXXI, chapitre 7 (Hermann, Paris, 1965).Google Scholar
2. Butts, H. S. and Smith, W. W., Prùfer rings, Math. Z. 95 (1967), 196211.Google Scholar
3. Gilmer, R., Contracted ideals with respect to integral extensions, Duke Math. J. 34 (1967), 561572.Google Scholar
4. Gilmer, R., The cancellation law for ideals in a commutative ring, Can. J. Math. 17 (1965), 281287.Google Scholar
5. Gilmer, R., Integral domains which are almost Dedekind, Proc. Amer. Math. Soc. 15 (1964), 813818.Google Scholar
6. Gilmer, R. and Heinzer, W., Primary ideals and valuation ideals. II, Trans. Amer. Math. Soc. 131 (1968), 149162.Google Scholar
7. Gilmer, R. and Ohm, J., Primary ideals and valuation ideals, Trans. Amer. Math. Soc. 117 1965), 237250.Google Scholar
8. Jensen, C. U., On characterizations of Priifer rings, Math. Scand. 13 (1963), 9098.Google Scholar
9. Krull, W., Beitrdge zur Arithmetik kommutativer Integritàtsbereiche, Math. Z. 41 (1936), 545577.Google Scholar
10. Krull, W., Idealtheorie (Springer, Berlin, 1935).Google Scholar
11. Krull, W., Zur Théorie der kommutativen Integritàtsbereiche, J. Reine Angew. Math. 192 1954), 230252.Google Scholar
12. Nakano, N., Idealtheorie in einem speziellen unendlichen algebraischen Zahlkôrper, J. Sci. Hiroshima Univ. Ser. A-I Math. 16 (1953), 425439.Google Scholar
13. Ohm, J., Integral closure and (x, y)n = (xn, yn), Monatsh. Math. 71 (1967), 3239.Google Scholar
14. Priifer, H., Untersuchungen i'tber Teilbarkeitseigenschaften in Kôrpern, J. Reine Angew. Math. 168 (1932), 136.Google Scholar
15. Zariski, O. and Samuel, P., Commutative algebra, Vol. I (Van Nostrand, Princeton, 1958).Google Scholar
16. Zariski, O. and Samuel, P., Commutative algebra, Vol. II (Van Nostrand, Princeton, 1960).10.1007/978-3-662-29244-0CrossRefGoogle Scholar