Published online by Cambridge University Press: 21 April 2021
Given a compact Kähler manifold X, it is shown that pairs of the form $(E,\, D)$ , where E is a trivial holomorphic vector bundle on X, and D is an integrable holomorphic connection on E, produce a neutral Tannakian category. The corresponding pro-algebraic affine group scheme is studied. In particular, it is shown that this pro-algebraic affine group scheme for a compact Riemann surface determines uniquely the isomorphism class of the Riemann surface.
The first- and third-named authors were partially supported by the French government through the UCAJEDI Investments in the Future project managed by the National Research Agency (ANR) with the reference number ANR2152IDEX201. The first-named author is partially supported by a J. C. Bose Fellowship, and school of mathematics, TIFR, is supported by 12-R&D-TFR-5.01-0500. The fourth-named author is supported by the DFG grant HE 6829/3-1 of the DFG priority program SPP 2026 Geometry at Infinity.