No CrossRef data available.
Article contents
On Critical Level Sets of Some two Degrees of Freedom Integrable Hamiltonian Systems
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We prove that all Liouville's tori generic bifurcations of a large class of two degrees of freedom integrable Hamiltonian systems (the so called Jacobi–Moser–Mumford systems) are nondegenerate in the sense of Bott. Thus, for such systems, Fomenko's theory [4] can be applied (we give the example of Gel'fand–Dikii's system). We also check the Bott property for two interesting systems: the Lagrange top and the geodesic flow on an ellipsoid.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1998
References
1.
Audin, M., Courbes Algébriques et Systèmes Intégrables: Geodésiques des Quadriques. Expo. Math.
12 (1994), 193–226.Google Scholar
3.
Donagi, R.,Dubrovin, B., Frankel, E. and Previato, E., Integrable systems and quantum groups.Montecatini Terme, 1993. Lecture Notes in Mathematics, 1620.Google Scholar
4.
Fomenko, A.T., Integrability and Nonintegrability in Geometry and Mechanics.MIA, Kluwer Academic Publishers, 1988.Google Scholar
5.
Fomenko, A.T., Topological Classification of Integrable systems (Ed.: Fomenko, A.T.). Adv. Soviet Math.
6 , 1991.Google Scholar
6.
Gavrilor, L., Ouazzani, M., Cabox, R., Bifurcation Diagrams and Fomenko's Surgery on Liouville's Tori of the Kolossoff Potential U = ρ + 1/ρ – k
cos ϕ. Ann. Sci. Ecole Norm. Sup
26 (1993), 545–564.Google Scholar
7.
Gavrilov, L. and Zhivkov, A., The Complex Geometry of Lagrange Top. Preprint 61 of Laboratoire de Mathématiques É. Picard, Université Paul Sabatier - Toulouse III.Google Scholar
8.
Lagrange, J.L., Mécanique Analytique, 1788 In: OEuvres de Lagrange, tome XII, Gauthier-Villars, 1889.Google Scholar
9.
Médan, C., The Bi-Hamiltonian Structure of the Lagrange Top. Phys. Lett. A
215 (1996), 176–180.Google Scholar
10.
Mumford, D., Tata Lectures on Theta II. Progr. Math. 43 , Birkhäuser, Boston, MA, 1984.Google Scholar
11.
Zung, Nguyen Tien, Singularities of Integrable Geodesic Flows on Multidimentional Torus and Sphere. J. Geom. Phys.
18 (1996), 147–162.Google Scholar
You have
Access