Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T07:12:04.007Z Has data issue: false hasContentIssue false

On Extensions for Gentle Algebras

Published online by Cambridge University Press:  28 January 2020

İlke Çanakçı
Affiliation:
Department of Mathematics, VU Amsterdam, Amsterdam 1081 HV, The Netherlands Email: i.canakci@vu.nl
David Pauksztello
Affiliation:
Department of Mathematics and Statistics, Lancaster University, Lancaster, LA1 4YF, United Kingdom Email: d.pauksztello@lancaster.ac.uk
Sibylle Schroll
Affiliation:
Department of Mathematics, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom Email: schroll@leicester.ac.uk

Abstract

We give a complete description of a basis of the extension spaces between indecomposable string and quasi-simple band modules in the module category of a gentle algebra.

Type
Article
Copyright
© Canadian Mathematical Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work has been supported by the EPSRC through the grants EP/K026364/1, EP/K022490/1 and EP/N005457/1. The third author is supported by the EPSRC through an Early Career Fellowship EP/P016294/1.

References

Arnesen, K. K., Laking, R., and Pauksztello, D., Morphisms between indecomposable complexes in the bounded derived category of a gentle algebra. J. Algebra 467(2016), 146. https://doi.org/10.1016/j.jalgebra.2016.07.019CrossRefGoogle Scholar
Assem, I., Brüstle, T., Charbonneau-Jodoin, G., and Plamondon, P.-G., Gentle algebras arising from surface triangulations. Algebra Number Theory 4(2010), 2, 201229. https://doi.org/10.2140/ant.2010.4.201CrossRefGoogle Scholar
Assem, I. and Skowroński, A., Iterated tilted algebras of type ˜A. Math. Z. 195(1987), 269290. https://doi.org/10.1007/BF01166463CrossRefGoogle Scholar
Baur, K. and Coelho Simões, R., A geometric model for the module category of a gentle algebra. IMRN, to appear. https://doi.org/10.1093/imrn/rnz150CrossRefGoogle Scholar
Bekkert, V. and Merklen, H., Indecomposables in derived categories of gentle algebras. Algebr. Represent. Theory 6(2003), 285302. https://doi.org/10.1023/A:1025142023594CrossRefGoogle Scholar
Bocklandt, R., Noncommutative mirror symmetry for punctured surfaces. Trans. Amer. Math. Soc. 368(2016), 1, 429469. https://doi.org/10.1090/tran/6375CrossRefGoogle Scholar
Brüstle, T., Douville, G., Mousavand, K., Thomas, H., and Yıldırım, E., On the Combinatorics of Gentle Algebras. Canad. J. Math., to appear. https://doi.org/10.4153/S0008414X19000397CrossRefGoogle Scholar
Butler, M. C. R. and Ringel, C. M., Auslander–Reiten sequences with few middle terms and applications to string algebras. Comm. Algebra 15(1987), 145179. https://doi.org/10.1080/00927878708823416CrossRefGoogle Scholar
Çanakçı, İ., Pauksztello, D., and Schroll, S., Mapping cones in the bounded derived category of a gentle algebra. J. Algebra 530(2019), 163194. https://doi.org/10.1016/j.jalgebra.2019.04.005CrossRefGoogle Scholar
Çanakçı, İ., Pauksztello, D., and Schroll, S., Addendum and corrigendum: mapping cones for morphisms involving a band complex in the bounded derived category of a gentle algebra. arxiv:2001.06435Google Scholar
Çanakçı, İ. and Schroll, S., Extensions in Jacobian algebras and cluster categories of marked surfaces. Adv. Math. 313(2017), 149. https://doi.org/10.1016/j.aim.2017.03.016CrossRefGoogle Scholar
Crawley-Boevey, W. W., Maps between representations of zero-relation algebras. J. Algebra 126(1989), 259263. https://doi.org/10.1016/0021-8693(89)90304-9CrossRefGoogle Scholar
Garcia Elsener, A., Gentle m-Calabi-Yau tilted algebras. arxiv:1701.07968Google Scholar
Haiden, F., Katzarkov, L., and Kontsevich, M., Flat surfaces and stability structures. Publ. Math. Inst. Hautes Études Sci. 126(2017), 247318. https://doi.org/10.1007/s10240-017-0095-yCrossRefGoogle Scholar
Happel, D., Triangulated categories in the representation theory of finite dimensional algebras. In: London Mathematical Society Lecture Notes Series, 119. Cambridge University Press, Cambridge, 1988. https://doi.org/10.1017/CBO9780511629228Google Scholar
Huerfano, R. S. and Khovanov, M., A category for the adjoint representation. J. Algebra 246(2001), 2, 514542. https://doi.org/10.1006/jabr.2001.8962CrossRefGoogle Scholar
Huisgen-Zimmermann, B. and Smalø, S. O., The homology of string algebras. I. J. Reine Angew. Math. 580(2005), 137. https://doi.org/10.1515/crll.2005.2005.580.1CrossRefGoogle Scholar
Kalck, M., Singularity categories of gentle algebras. Bull. Lond. Math. Soc. 47(2015), 1, 6574. https://doi.org/10.1112/blms/bdu093CrossRefGoogle Scholar
Krause, H., Maps between tree and band modules. J. Algebra 137(1991), 186194. https://doi.org/10.1016/0021-8693(91)90088-PCrossRefGoogle Scholar
Labardini-Fragoso, D., Quivers with potentials associated to triangulated surfaces. Proc. Lond. Math. Soc. (3) 98(2009), 3, 797839. https://doi.org/10.1112/plms/pdn051CrossRefGoogle Scholar
Lekili, Y. and Polishchuk, A., Derived equivalences of gentle algebras via Fukaya categories. Math. Ann. 376(2020), 1–2, 187225. https://doi.org/10.1007/s00208-019-01894-5CrossRefGoogle Scholar
McConville, T., Lattice structure of Grid-Tamari orders. J. Combin. Theory Ser. A 148(2017), 2756. https://doi.org/10.1016/j.jcta.2016.12.001CrossRefGoogle Scholar
Opper, S., Plamondon, P.-G., and Schroll, S., A geometric model for the derived category of gentle algebras. arxiv:1801.09659Google Scholar
Palu, Y., Pilaud, V., and Plamondon, P.-G., Non-kissing complexes and 𝜏 tilting for gentle algebras. Mem. Amer. Math. Soc., to appear. arxiv:1707.07574Google Scholar
Schröer, J., Modules without self-extensions over gentle algebras. J. Algebra 216(1999), 1, 178189. https://doi.org/10.1006/jabr.1998.7696CrossRefGoogle Scholar
Simson, D. and Skowroński, A., Elements of the representation theory of associative algebras. Vol. 3. Representation-infinite tilted algebras. London Mathematical Society Student Texts, 72, Cambridge University Press, Cambridge, 2007.Google Scholar
Vossieck, D., The algebras with discrete derived category. J. Algebra 243(2001), 168176. https://doi.org/10.1006/jabr.2001.8783CrossRefGoogle Scholar
Wald, B. and Waschbüsch, J., Tame biserial algebras. J. Algebra 95(1985), 480500. https://doi.org/10.1016/0021-8693(85)90119-XCrossRefGoogle Scholar
Zhang, J., On the indecomposable exceptional modules over gentle algebras. Comm. Alg. 42(2014), 30963199. https://doi.org/10.1080/00927872.2013.781369CrossRefGoogle Scholar