Article contents
On Homeomorphisms between Extension Spaces
Published online by Cambridge University Press: 20 November 2018
Extract
In this note, conditions are obtained which will ensure that two topological spaces are homeomorphic when they have homeomorphic extension spaces of a certain kind. To discuss this topic in suitably general terms, an unspecified extension procedure, assumed to be applicable to some class of topological spaces, is considered first, and it is shown that simple conditions imposed on the extension procedure and its domain of operation easily lead to a condition of the desired kind. After the general result has been established it is shown to be applicable to a number of particular extensions, such as the Stone-Čech compactification and the Hewitt Q-extension of a completely regular Hausdorff space, Katětov's maximal Hausdorff-closed extension of a Hausdorff space, the maximal zero-dimensional compactification of a zero-dimensional space, the maximal Hausdorff-minimal extension of a semi-regular space, and Freudenthal's compactification of a rim-compact space. The case of the Hewitt Q-extension was first discussed by Heider (6).
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1960
References
- 2
- Cited by