Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T09:09:34.958Z Has data issue: false hasContentIssue false

On Measures of Symmetry of Convex Bodies

Published online by Cambridge University Press:  20 November 2018

G. D. Chakerian
Affiliation:
University of California, Davis
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let K be a convex body (compact, convex set with interior points) in n-dimensional Euclidean space En, and let V(K) denote the volume of K. Let K′ be a centrally symmetric body of maximum volume contained in K (in fact, K′ is unique; see 2 or 9), and define

c(K) = V(K′)/V(K)

Let

c(n) = inf{c(K) : KEn}.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1965

References

1. Fáry, I., Sur la densité des réseaux de domaines convexes, Bull. Soc. Math. France, 78 (1950), 152161.Google Scholar
2. Fáry, I. and Rédei, L., Der zentralsymmetrische Kern und die zentralsymmetrische Huile von konvexen Körpern, Math. Ann., 122 (1950), 205220.Google Scholar
3. Grünbaum, B., On intersections of similar sets, Portugal. Math., 18 (1959), 155164.Google Scholar
4. Gr, B.ünbaum, Measures of symmetry for convex sets, Proc. Symp. Pure Math., Amer. Math. Soc, 7 (1963), 233270.Google Scholar
5. Hadwiger, H., Vorlesungen über Inhalt, Oberfldche und Isoperimetrie (Berlin, 1957).Google Scholar
6. Krakowski, F., Bemerkung zu einer Arbeit von W. Nohl, Elem. Math., 18 (1963), 6061.Google Scholar
7. Macbeath, A. M., A compactness theorem for affine equivalence-classes of convex regions, Can. J. Math., 3 (1951), 5461.Google Scholar
8. Nohl, W., Die innere axiale Symmetrie zentrischer Eibereiche der Euklidischen Ebene, Elem. Math., 17 (1962), 5963.Google Scholar
9. Stein, S., The symmetry function in a convex body, Pacific J. Math., 6 (1956), 145148.Google Scholar