No CrossRef data available.
Article contents
On n-Dimensional Steinberg Symbols
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
The aim of this work is to provide a new approach for constructing $n$-dimensional Steinberg symbols on discrete valuation fields from $\left( n\,+\,1 \right)$-cocycles and to study reciprocity laws on curves related to these symbols.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2008
References
[1]
Arbarello, E., de Concini, C., and Kac, V. G., The infinite wedge representation and the reciprocity law for algebraic curves. Proc. of Sympos. Pure Math, 1989, 49, Part 1, 171–190.Google Scholar
[2]
Brylinsky, J. L. and McLaughlin, D. A., Multidimensional reciprocity laws.
J. Reine Angew. Math.
481(1996), 125–147.Google Scholar
[3]
Brylinsky, J. L. and McLaughlin, D. A., The geometry of two-dimensional symbols
. K-Theory
10(1996), no. 3, 215–237.Google Scholar
[4]
Fesenko, I. B., A generalized symbol in multidimensional local fields.
In: Rings and modules. Limit theorems of probability theory, 2, (Russian), Leningrad. Univ.,
214(1988), 88–92.Google Scholar
[5]
Fesenko, I. B. and Vostokov, S., On torsion in higherMilnor functors for multidimensional local fields.
Amer. Math. Soc. Transl. 2,
154(1992), 25–35.Google Scholar
[6]
Eilenberg, S. and McLane, S., Cohomology theory in abstract groups.
I. Ann. Math.
48(1947), 51–78.Google Scholar
[7]
Milnor, J., Introduction to algebraic K-theory, Annals of Mathematics Studies 72, Princeton University Press, Princeton, N.J., University of Tokyo Press, Tokyo, 1971.Google Scholar
[8]
Pablos Romo, F., 3-Cocycles, symbols and reciprocity laws on curves.
J. Pure Appl. Algebra
205(2006), no. 1, 94–116.Google Scholar
[9]
Pablos Romo, F.,
A note on Steinberg symbols on algebraic curves.
Comm. Algebra
31(2003), no.2, 981–990.Google Scholar
[10]
Pablos Romo, F., Algebraic construction of the tame symbol and the Parshin symbol on a surface.
J. Algebra
274(2004), no. 1, 335–346.Google Scholar
[11]
Pablos Romo, F., On the tame symbol of an algebraic curve.
Comm. Algebra
30(2002), no. 9, 4349–4368.Google Scholar
[12]
N.Parshin, A., Local class field theory.
Proc. Steklov Inst. Math.
3(1985), 157–185.Google Scholar
[13]
N.Parshin, A., Galois cohomology and the Brauer group of local fields.
Proc. Steklov Inst. Math.,
4(1991), 191–201.Google Scholar
[14]
Parshin, A. N. and Shafarevich, I. R., Number Theory II, In: Encyclopaedia of Mathematical Sciences, 62, Springer-Verlag, Berlin, 1992.Google Scholar
[15]
Schmidt, H. L., Über das Reziprozitätsgesatz in relativ-zyklischen algebraischen Funktionkörpern mit endlichem Konstantenkörper.
Math. Z.
40(1936), 94–109.Google Scholar
[16]
Serre, J. P., Groupes algébriques et corps de classes, Publications de l’institut de mathématique de l’université de Nancago, VII, Hermann, Paris, 1959.Google Scholar
[17]
Tate, J., Residues of differentials on curves.
Ann. Scient.Éc. Norm. Sup.(4)
1(1968), 149–159.Google Scholar
You have
Access