No CrossRef data available.
Article contents
On Nonabelian H2 for Profinite Groups
Published online by Cambridge University Press: 20 November 2018
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Let G be a profinite group. We define an extension (E, J) of G by a group A to consist of an exact sequence of groups together with a section j : G → E of K satisfying: for some open normal subgroup Sof G, and the map is continuous (A being discrete).
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1992
References
1.
Eilenberg, S. and Mac, S. Lane, Cohomology theory in abstract groups, II, Ann. Math.
48(1947), 326–341.Google Scholar
2.
Giraud, J., Cohomologie non abélienne, Grundl. math. Wiss. 179(Springer-Verlag, Berlin
1972).Google Scholar
3.
Langlands, R.P. und Rapoport, M., Shimuravarietäten und Gerben, J. reine angew. Math.
378(1987), 113- 220.Google Scholar
4.
Serre, J.-R, Cohomologie Galoisienne, Lect. Notes Math. 5(Springer-Verlag, Berlin
1965).Google Scholar
5.
Shatz, S., Profinite groups, Arithmetic and Geometry, Annals Math. Studies 67(Princeton 1972).Google Scholar
6.
Springer, T.A., Nonabelian H2 in Galois cohomology, Proc. Symp. Pure Math.
9(1966), 164–182.Google Scholar
You have
Access