Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T01:01:57.031Z Has data issue: false hasContentIssue false

On Projective Modules and Automorphisms of Central Separable Algebras

Published online by Cambridge University Press:  20 November 2018

L. N. Childs*
Affiliation:
Northwestern University, Evanston, Illinois
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper developed from, and complements, the paper by F. R. DeMeyer (see 6).

In the first section of this paper we note a correspondence between projective modules of a central separable R-algebra A and the two-sided ideals of central separable algebras in the same class as A in the Brauer group of R. When R has the property that rank one projective A-modules are free, this correspondence yields a bijection between isomorphism types of indecomposable projective A-modules and the isomorphism types of algebras in the Brauer class of A which are the analogue of division algebra components in the field case. This bijection was remarked on without proof by DeMeyer in (6).

Pursuing the ideas behind this correspondence, we consider the situation for a separable order A in a central simple algebra A over an algebraic number field, and obtain, by means of results involving the reduced norm, a generalization of DeMeyer's remark except when the division algebra component of A is a totally definite quaternion algebra (Theorem 3.3).

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1969

References

1. Auslander, M. and Goldman, O., Maximal orders, Trans. Amer. Math. Soc. 97 (1960), 124.Google Scholar
2. Auslander, M. and Goldman, O., The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367409.Google Scholar
3. Bass, H., The Morita theorems (mimeographed notes, University of Oregon, 1964).Google Scholar
4. Bass, H., K-theory and stable algebra, Inst. Hautes Études Sci. Publ. Math. No. 22 (1964), 560.Google Scholar
5. Childs, L. N. and DeMeyer, F. R., On automorphisms of separable algebras, Pacific J. Math. 23 (1967), 2534.Google Scholar
6. DeMeyer, F. R., Projective modules over central separable algebras, Can. J. Math. 21 (1969) 3943.Google Scholar
7. Deuring, M., Algebren (Ergebn. Math. Vol. 4, No. 1, Berlin, 1937).Google Scholar
8. Eichler, M., Bestimmung der Idealklassenzahl in gewissen normalen einfachen Algebren, J. Reine Angew. Math. 176 (1937), 192202.Google Scholar
9. Eichler, M., Über die Idealklassenzahl total definiter Quaternionenalgebren, Math. Z. J+$ (1937), 102109.Google Scholar
10. Eichler, M., Über die Idealklassenzahl hyperkomplexer Système, Math. Z. 43 (1937), 481494.Google Scholar
11. Harada, M., Hereditary orders, Trans. Amer. Math. Soc. 107 (1963), 273290.Google Scholar
12. Hasse, H., Über P-adische Schiefkörper und ihre Bedeutungfilr die Arithmetik hyperkomplexer Zahlsysteme, Math. Ann. 104 (1931), 495534.Google Scholar
13. Hoobler, R. T., A generalization of the Brauer group and Amitsur cohomology (Thesis, University of California at Berkeley, 1966).Google Scholar
14. O'Meara, O. T., Introduction to quadratic forms (Academic Press, New York, 1965).Google Scholar
15. Riley, J., Reflexive ideals in maximal orders, J. Algebra 2 (1965), 451465.Google Scholar
16. Rosenberg, A. and Zelinsky, D., Automorphisms of separable algebras, Pacific J. Math. 11 (1961), 11091118.Google Scholar
17. Schilling, O., Arithmetic in a special class of algebras, Ann. of Math. (2) 38 (1937), 116119.Google Scholar
18. Silver, L., Tame orders, tame ramification and Galois cohomology, Illinois J. Math. 12 (1968), 734.Google Scholar
19. Swan, R. G., Projective modules over group rings and maximal orders, Ann. of Math. (2) 76 (1962), 5561.Google Scholar