Article contents
On Screenability and Metrizability of Moore Spaces
Published online by Cambridge University Press: 20 November 2018
Extract
After showing that each screenable Moore space is pointwise paracompact and that the converse is not true, Heath in [4] asked for a necessary and sufficient condition for a pointwise paracompact Moore space to be screenable. In [12], Traylor asked for a necessary and sufficient condition for a pointwise paracompact Moore space to be metrizable. It is the purpose of this paper to provide such conditions, and to establish relationships between those conditions and metrization problems in Moore spaces.
A Moore space S is a space (all spaces are T1) in which there exists a sequence G = (G1, G2, …) of open coverings of S, called a development, which satisfies the first three parts of Axiom I in [7]. The statement that a collection H of subsets of the space S is point finite (point countable) means that no point of S belongs to infinitely (uncountably) many elements of H.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1971
References
- 4
- Cited by