Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T03:25:18.287Z Has data issue: false hasContentIssue false

On Square-Integrable Representations of Classical p-adic Groups

Published online by Cambridge University Press:  20 November 2018

Chris Jantzen*
Affiliation:
Department of Mathematics, Ohio State University, Columbus, OH 43210, USA email: jantzen@math.ohio-state.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we use Jacquet module methods to study the problem of classifying discrete series for the classical $p$-adic groups $\text{Sp}(2n,F)\,\,\text{and}\,\text{SO}\,(2n+1,F)$.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2000

References

[Adl] Adler, J., Self-contragredient supercuspidal representations of GL n. Proc. Amer. Math. Soc. 125(1997), 24712479.Google Scholar
[Aub] Aubert, A.-M., Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d’un groupe réductif p-adique. Trans. Amer. Math. Soc. 347(1995), 2179–2189; and Erratum à “Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d’un groupe réductif p–adique”. Trans. Amer.Math. Soc. 348(1996), 46874690.Google Scholar
[Ban] Ban, D., Parabolic induction and Jacquet modules of representations of O (2n, F). Glasnik.Mat., to appear.Google Scholar
[BDK] Bernstein, J., Deligne, P. and Kazhdan, D., Trace Paley-Wiener theorem for reductive p-adic groups. J. Analyse Math. 47(1986), 180192.Google Scholar
[B-Z] Bernstein, I. and Zelevinsky, A., Induced representations of reductive p-adic groups I. Ann. Sci. École Norm. Sup. 10(1977), 441472.Google Scholar
[B-W] Borel, A. and Wallach, N., Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups. Princeton University Press, Princeton, 1980.Google Scholar
[B-K] Bushnell, C. and Kutzko, P., The Admissible Dual of GL(N) Via Compact Open Subgroups. Princeton University Press, Princeton, 1993.Google Scholar
[Cas] Casselman, W., Introduction to the theory of admissible representations of p-adic reductive groups. Preprint.Google Scholar
[Gol] Goldberg, D., Reducibility of induced representations for Sp(2n) and SO(n). Amer. J. Math. 116(1994), 11011151.Google Scholar
[Jan1] Jantzen, C., Degenerate principal series for symplectic and odd-orthogonal groups . Mem. Amer.Math. Soc. 590(1996).Google Scholar
[Jan2] Jantzen, C., Reducibility of certain representations for symplectic and odd-orthogonal groups. Comp. Math. 104(1996), 5563.Google Scholar
[Jan3] Jantzen, C., On supports of induced representations for symplectic and odd-orthogonal groups . Amer. J. Math. 119(1997), 12131262.Google Scholar
[K-L] Kazhdan, D. and Lusztig, G., Proof of the Deligne-Langlands conjecture for Hecke algebras. Invent. Math. 87(1987), 153215.Google Scholar
[Moe1] Moeglin, C., Représentations unipotentes et formes automorphes de carré intégrable. ForumMath. 6(1994), 651744.Google Scholar
[Moe2] Moeglin, C., Normalisation des opérateurs d’entrelacement et réductibilité des induites des cuspidales; le cas des groupes classiques p-adiques. Preprint.Google Scholar
[Mu] Muić, G., Some results on square integrable representations; Irreducibility of standard representations. Internat. Math. Res. Notices 14(1998), 705726.Google Scholar
[M-R] Murnaghan, F. and Repka, J., Reducibility of induced representations of split classical p-adic groups. Comp. Math. 114(1998), 263313.Google Scholar
[Re] Reeder, M., Hecke algebras and harmonic analysis on p-adic groups. Amer. J. Math. 119(1997), 225248.Google Scholar
[S-S] Schneider, P. and Stuhler, U., Representation theory and sheaves on the Bruhat-Tits building. Inst. Hautes Études Sci. Publ. Math. 85(1997), 97191.Google Scholar
[Sha1] Shahidi, F., A proof of Langlands conjecture on Plancherelmeasure; complementary series for p-adic groups. Ann. of Math. 132(1990), 273330.Google Scholar
[Sha2] Shahidi, F., Twisted endoscopy and reducibility of induced representations for p-adic groups. Duke Math. J. 66(1992), 141.Google Scholar
[Sil1] Silberger, A., The Langlands quotient theorem for p-adic groups. Math. Ann. 236(1978), 95104.Google Scholar
[Sil2] Silberger, A., Special representations of reductive p-adic groups are not integrable. Ann. of Math. 111(1980), 571587.Google Scholar
[Tad1] Tadić, M., Representations of p-adic symplectic groups. Comp. Math. 90(1994), 123181.Google Scholar
[Tad2] Tadić, M., Structure arising from induction and Jacquet modules of representations of classical p-adic groups. J. Algebra 177(1995), 133.Google Scholar
[Tad3] Tadić, M., On reducibility of parabolic induction. Israel J. Math. 107(1998), 159210.Google Scholar
[Tad4] Tadić, M., On regular square integrable representations of p-adic groups. Amer. J. Math. 120(1998), 159210.Google Scholar
[Tad5] Tadić, M., On square integrable representations of classical p-adic groups. Preprint.Google Scholar
[Zel1] Zelevinsky, A., Induced representations of reductive p-adic groups II, On irreducible representations of GL(n). Ann. Sci. École Norm. Sup. 13(1980), 165210.Google Scholar
[Zel2] Zelevinsky, A., p-adic analogue of the Kazhdan-Lusztig hypothesis. Funct. Anal. Appl. 15(1981), 8392.Google Scholar
[Zh] Zhang, Y., L-packets and reducibilities. J. reine angew.Math., to appear.Google Scholar