No CrossRef data available.
Article contents
On the Asymptotic Growth ofBloch–Kato–Shafarevich–Tate Groups ofModular Forms Over CyclotomicExtensions
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We study the asymptotic behaviour of the Bloch–Kato–Shafarevich–Tate group of a modular form $f$ over the cyclotomic ${{\mathbb{Z}}_{p}}$-extension of $\mathbb{Q}$ under the assumption that $f$ is non-ordinary at $p$. In particular, we give upper bounds of these groups in terms of Iwasawa invariants of Selmer groups defined using $p$-adic Hodge Theory. These bounds have the same form as the formulae of Kobayashi, Kurihara, and Sprung for supersingular elliptic curves.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2017
References
[Ber03]
Berger, L., Block andKato's exponential map: three explicit formulas.
Doc. Math. Extra Vol.
3(2003), 99–129.Google Scholar
[Ber04]
Berger, L., Limites de représentations cristallines.
Compos. Math.
140(2004), no. 6,1473–1498.http://dx.doi.Org/10.1112/S0010437X04000879
Google Scholar
[BK90]
Bloch, S. and Kato, K., L-functions and Tamagawa numbers of motives.
In: The Grothendieck Festschrift, Vol. I, Progr. Math., 86, Birkhäuser, Boston, MA, 1990, pp. 333–400.Google Scholar
[CC99]
Cherbonnier, F. and Colmez, P., Théorie d'Iwasawa des représentations p-adiques d'un corps local.
J. Amer. Math. Soc.
12(1999), no. 1, 241–268.http://dx.doi.org/10.1090/S0894-0347-99-00281-7
Google Scholar
[FL82]
Fontaine, J.-M. and Laffaille, G., Construction de représentations p-adiques.
Ann. Sci. École Norm. Sup. (4) 15(1982), no. 4, 547–608.Google Scholar
[Gil79]
Gillard, R., Unités cyclotomiques, unités semi-locales et .
Ann. Inst. Fourier (Grenoble)
29 (1979), no. 1, xiv, 49–79.Google Scholar
[KatO4]
Kato, K., P-adic Hodge theory and values of zeta functions of modular forms.
Astérisque
295(2004), ix, 117–290.Google Scholar
[Kob03]
Kobayashi, S., Iwasawa theory for elliptic curves at super singular primes.
Invent. Math.
152(2003), no. 1, 1–36.http://dx.doi.org/10.1007/s00222-002-0265-4
Google Scholar
[KurO2]
Kurihara, M., On the Tate-Shafarevich groups over cyclotomic fields of an elliptic curve with supersingular reduction.I.
Invent. Math.
149(2002), no. 1,195–224.http://dx.doi.org/10.1007/s002220100206
Google Scholar
[Leill]
Lei, A., Iwasawa theory for modular forms at supersingular primes.
Compos. Math.
147(2011),
no. 3, 803–838.http://dx.doi.Org/10.1112/S0010437X10005130
Google Scholar
[Leil5]
Lei, A., Bounds on the Tamagawa numbers of a crystalline representation over towers of
cyclotomic extensions.
Tohoku Math. J., to appear.
Google Scholar
[LLZ10]
Lei, A., Loeffler, D., and Zerbes, S. L., Wach modules and Iwasawa theory for modular forms.
Asian J. Math.
14(2010), no. 4, 475–528.http://dx.doi.org/10.4310/AJM.2010.v14.n4.a2
Google Scholar
[LLZ11]
Lei, A., Coleman maps and the p-adic regulator.
Algebra Number Theory
5(2011), no. 8,
1095–1131.http://dx.doi.org/10.2140/ant.2011.5.1095
Google Scholar
[LZ13]
Loeffler, D. and Zerbes, S. L., Wach modules and critical slope p-adic L-functions.
J. Reine
Angew. Math.
679(2013), 181–206.http://dx.doi.org/10.1515/crelle.2012.012
Google Scholar
[LZ14]
Loeffler, D., Iwasawa theory and p-adic L-functions over extensions.
Int. J. Number Theory
10(2014), no. 8, 2045–2096.http://dx.doi.Org/1 0.1142/S1793042114500699
Google Scholar
[Maz72]
Mazur, B., Rational points ofabelian varieties with values in towers of number fields.
Invent. Math.
18(1972), no. 3-4, 183–266.http://dx.doi.org/10.1007/BF01389815
Google Scholar
[PR94]
Perrin-Riou, B., Théorie d'Iwasawa des représentations p-adiques sur un corps local.
Invent. Math.
115(1994), no. 1, 81–161,http://dx.doi.org/10.1007/BF01231755
Google Scholar
[PR03]
Perrin-Riou, B. , Arithmétique des courbes elliptiques à réduction supersinguliére en p.
Experiment. Math.
12(2003), no. 2, 155–186.http://dx.doi.org/10.1080/10586458.2003.10504490
Google Scholar
[Spr12]
Sprung, F. E. I., Iwasawa theory for elliptic curves at supersingular primes: a pair of main conjectures.
J. Number Theor
132(2012), no. 7,1483–1506.http://dx.doi.0rg/IO.IOI6/j.jnt.2O11.11.003
Google Scholar
[Spr13]
Sprung, F. E. I. , The Šafarevic-Tate group in cyclotomic -extensions at supersingular primes.
J. Reine Angew. Math.
681(2013), 199–218.http://dx.doi.org/10.1515/crelle-2012-0031
Google Scholar
[Spr15]
Sprung, F. E. I. , On pairs of p-adic L-functions for weight two modular forms.
arxiv:1601.00010
Google Scholar
You have
Access
- 23
- Cited by