Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-14T23:10:41.919Z Has data issue: false hasContentIssue false

On the Existence of Normal Metacompact Moore Spaces which are not Metrizable

Published online by Cambridge University Press:  20 November 2018

Franklin D. Tall*
Affiliation:
University of Toronto, Toronto, Ontario
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is known that the following classes of spaces (all spaces in this article are assumed T1) are identical:

1. Images of metric spaces under continuous open maps with compact point inverses.

2. Spaces with uniform bases (in the sense of Alexandrov [1]).

3. Metacompact developable spaces.

4. Spaces with σ-point-finite bases in which closed sets are Gδ's.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1974

References

1. Aleksandrov, P. S., On the metrization of topological spaces, (in Russian), Bull. Acad. Polon. Sri. Sér. Sci. Math. Astronom. Phys. 8 (1960), 135140.Google Scholar
2. Arhangel'skii, A. V., On mappings of metric spaces, Soviet Math. Dokl. 3 (1962), 953956.Google Scholar
3. Arhangel'skii, A. V., Mappings and spaces, Russian Math. Surveys 21 (1966), 87114.Google Scholar
4. Arhangel'skii, A. V., The property of paracompactness in the class of perfectly normal, locally bicompact spaces, Soviet Math. Dokl. 13 (1972), 517520.Google Scholar
5. Aull, C. E., Topological spaces with a σ-point-finite base, Proc. Amer. Math. Soc. 29 (1971), 411416.Google Scholar
6. Bing, R. H., Metrization of topological spaces, Can. J. Math. 3 (1951), 175186.Google Scholar
7. Bing, R. H., A translation of the normal Moore space conjecture, Proc. Amer. Math. Soc. 16 (1965), 612619.Google Scholar
8. Borges, C. J. R., On metrizability of topological spaces, Can. J. Math. 20 (1968), 795804.Google Scholar
9. Coban, M. M., On o∼-paracompact spaces, (in Russian), Vestnik Moskov. Univ. Ser. I Mat. Meh. (1969), 20-27.Google Scholar
10. Corson, H. H. and Michael, E., Metrizability of certain countable unions, Illinois J. Math. 8 (1964), 351360.Google Scholar
11. Creede, G. D., Embedding of complete Moore spaces, Proc. Amer. Math. Soc. 28 (1971), 609612.Google Scholar
12. Fitzpatrick, B., On dense subspaces of Moore spaces, II, Fund. Math. 61 (1967), 9192.Google Scholar
13. Hanai, S., On open mappings, II, Proc. Japan Acad. 37 (1961), 233238.Google Scholar
14. Heath, R. W., Screenability, pointwise paracompactness and metrization of Moore spaces, Can. J. Math. 16 (1964), 763770.Google Scholar
15. Martin, D. and Solovay, R. M., Internal Cohen extensions, Ann. Math. Logic 2 (1970), 143178.Google Scholar
16. Przymusinski, T. and Tall, F. D., The undecidability of the existence of a non-separable normal Moore space satisfying the countable chain condition, Fund. Math, (to appear).Google Scholar
17. Reed, G. M., On dense subspaces, pp. 337-344 in Proc. Univ. Okla. Top. Conf. 1972, Norman, Oklahoma, 1972.Google Scholar
18. Shiraki, T., A note on spaces with a uniform base, Proc. Japan Acad. 47 (1971), 10361041.Google Scholar
19. Solovay, R. M. and S. Tennenbaum, Iterated Cohen extensions and Souslin's problem, Ann. of Math. 94 (1971), 201245.Google Scholar
20. Steen, L. A. and Seebach, J. A., Counterexamples in topology (Holt Rinehart and Winston, New York, 1970).Google Scholar
21. Tall, F. D., Set-theoretic consistency results and topological theorems concerning the normal Moore space conjecture and related problems, Ph.D. thesis, University of Wisconsin, 1969.Google Scholar
22. Tall, F. D., A counterexample in the theories of compactness and of metrization, Proc. Kon. Ned. Akad. van Wetensch., Amsterdam, Series A (to appear).Google Scholar
23. Tall, F. D., An alternative to the continuum hypothesis and its uses in general topology (preprint).Google Scholar
24. Traylor, D. R., Concerning metrizability of pointwise paracompact Moore spaces, Can. J. Math. 16 (1966), 407411.Google Scholar
25. Traylor, D. R., Metrizability and completeness in normal Moore spaces, Pacific J. Math. 17 (1966), 381390.Google Scholar
26. Traylor, D. R., Metrizability in normal Moore spaces, Pacific J. Math. 19 (1966), 174181.Google Scholar
27. Traylor, D. R., On normality, pointwise paracompactness and the metrization question, pp. 286-289 in Topology Conference Arizona State University, 1967, Tempe, Arizona, 1968.Google Scholar
28. Worrell, J. M., Jr., On continuous mappings of metacompact Čech complete spaces, Pacific J. Math. 30 (1969), 555562.Google Scholar