Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-15T17:34:20.919Z Has data issue: false hasContentIssue false

On the Extensions of Lie Algebras

Published online by Cambridge University Press:  20 November 2018

Richard E. Block*
Affiliation:
University of Illinois, Urbana, Illinois
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we give some results on the extensions of Lie algebras, with emphasis on the case of prime characteristic, although part of the paper is also of interest at characteristic 0. An extension of a Lie algebra L is a pair (E, π), where £ is a Lie algebra and π is a homomorphism of E onto L. The kernel K of the extension is ker π.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1968

Footnotes

This research was supported in part by the National Science Foundation under grant GP5949; presented in part to the American Mathematical Society in April 1962.

References

1. Albert, A. A. and Frank, M. S., Simple Lie algebras of characteristic p, Univ. e Politec. Torino Rend. Sem. Mat. 14 (1954-55), 117139.Google Scholar
2. Barnes, R. T., On splitting fields for certain Lie algebras of prime characteristic, Proc. Amer. Math. Soc. 17 (1966), 930935.Google Scholar
3. Block, R. E., On torsion-free abelian groups and Lie algebras, Proc. Amer. Math. Soc. 9 1958), 613620.Google Scholar
4. Block, R. E., Trace forms on Lie algebras, Can. J. Math. 14 (1962), 553564.Google Scholar
5. Block, R. E., The Lie algebras with a quotient trace form, Illinois J. Math. 9 (1965), 277285.Google Scholar
6. Block, R. E., On the Mills-Seligman axioms for Lie algebras of classical type, Trans. Amer. Math. Soc. 121 (1966), 378392.Google Scholar
7. Block, R. E. and Zassenhaus, H., The Lie algebras with a non-degenerate trace form, Illinois J. Math. 8 (1964), 543549.Google Scholar
8. Campbell, H. E., On the Casimir operator, Pacific J. Math. 7 (1957), 13251331.Google Scholar
9. Chevalley, C., Théorie des groupes de Lie, Tome III, Théorèmes généraux sur les algèbres de Lie, Actualités Sci. Indust., No. 1226 (Hermann, Paris, 1955).Google Scholar
10. Curtis, C. W., Representations of Lie algebras of classical type with applications to linear groups, J. Math. Mech. 9 (1960), 307326.Google Scholar
11. Curtis, C. W., On the dimensions of the irreducible modules of Lie algebras of classical type, Trans. Amer. Math. Soc. 96 (1960), 135142.Google Scholar
12. Freudenthal, H., The existence of a vector of weight in irreducible Lie groups without centre, Proc. Amer. Math. Soc. 7 (1956), 175176.Google Scholar
13. Jacobson, N., Lie algebras (Interscience, New York, 1962).Google Scholar
14. Mills, W. H. and Seligman, G. B., Lie algebras of classical type, J. Math. Mech. 6 (1957), 519548.Google Scholar
15. Ree, R., On generalized Witt algebras, Trans. Amer. Math. Soc. 83 (1956), 510546.Google Scholar
16. Steinberg, R., Générateurs, relations et revêtements des groupes algébriques, Colloq. Théorie des Groupes Algébriques (Bruxelles, 1962), pp. 113127, Librairie Universitaire, Louvain (Gauthier-Villars, Paris, 1962).Google Scholar
17. Zassenhaus, H., Ueber Lie'sche Ringe mit Primzahlcharakteristik, Abh. Math. Sem. Univ. Hamburg 13 (1939), 1100.Google Scholar