Article contents
On the Integral Extensions of Quadratic Forms Over Local Fields
Published online by Cambridge University Press: 20 November 2018
Extract
Let F be a local field with ring of integers and unique prime ideal (p). Suppose that V a finite-dimensional regular quadratic space over F, W and W′ are two isometric subspaces of V (i.e. τ: W → W′ is an isometry from W to W′). By the well-known Witt's Theorem, τ can always be extended to an isometry σ ∈ O(V).
The integral analogue of this theorem has been solved over non-dyadic local fields by James and Rosenzweig [2], over the 2-adic fields by Trojan [4], and partially over the dyadics by Hsia [1], all for the special case that W is a line. In this paper we give necessary and sufficient conditions that two arbitrary dimensional subspaces W and W′ are integrally equivalent over non-dyadic local fields.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1970
References
- 2
- Cited by