Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-15T17:55:28.265Z Has data issue: false hasContentIssue false

On the Invariance of the Spectrum in Locally m-Convex Algebras

Published online by Cambridge University Press:  20 November 2018

R. M. Brooks*
Affiliation:
University of Minnesota, Minneapolis, Minnesota
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we consider two closely related problems concerning a complete locally m-convex (LMC) algebra A with identity. Let a be a fixed element of A, and let P(a) be the smallest closed subalgebra containing a and 1. If B is any subalgebra containing a and 1, we let σ(a; B) denote the spectrum of a as an element of B. (I) Describe the set σ(a; P(a)) in terms of σ(a; A). (II) Give necessary and sufficient conditions in order that σ (a; B) = σ(a; A) for every closed subalgebra B of A which contains a and 1.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1968

Footnotes

The research for this paper was supported in part by NSF Grant GP5707.

References

1. Arens, R., Dense inverse limit rings, Michigan Math., 5 (1958), 169182.Google Scholar
2. Michael, E. A., Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc, No. 11 (1952).Google Scholar
3. Rickart, C. E., General theory of Banach algebras (Van Nostrand, New York, 1960).Google Scholar