Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-16T00:33:09.085Z Has data issue: false hasContentIssue false

On The Pseudo-Euclidean Geometry Due to G. Hessenberg

Published online by Cambridge University Press:  20 November 2018

Paul Szász*
Affiliation:
Loránd Eötvös University, Budapest, Hungary
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

G. Hessenberg (2) showed that euclidean plane geometry can be realized on the surface of the sphere without assuming the parallel axiom. This geometry will be called the pseudo-euclidean geometry due to G. Hessenberg. In the present paper we give a slightly different treatment, which is perhaps simpler than that of Hessenberg and which has a greater transparency.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1967

References

1. Forder, H. G., The foundations of euclidean geometry (Dover Publications, New York, 1958).Google Scholar
2. Hessenberg, G., Bergründung der elliptischen Geometrie, Math. Ann., 61 (1905), 173184.Google Scholar
3. Hilbert, D., Grundlagen der Geomtrie, 9. Aufl. (Stuttgart, 1962).Google Scholar
4. Kerékjärtó, B., Les fondements de la géométrie, Vol. 1 (Budapest, 1955).Google Scholar
5. Liebmann, H., Begründung der sphärischen Trigonometrie, … , Ber. Verh. Sachs. Akad. Wiss. Leipzig, Math.—Nat. Kl., 60 (1908), 289305.Google Scholar
6. Mansion, P., Essai d'exposition élémentaire des principes fondamentaux de la géométrie non euclidienne de Riemann, Mathesis, 2e série, t. 5 (1895), Supplement, février 1895, pp. 821.Google Scholar