No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
Let $P\in \mathbb{Z}\left[ n \right]$ with $P(0)\,=\,0\,\text{and}\,\varepsilon \,>\,0$. We show, using Fourier analytic techniques, that if $N\ge \exp \exp \left( C{{\varepsilon }^{-1}}\log {{\varepsilon }^{-1}} \right)\,\text{and}\,A\,\subseteq \,\left\{ 1,\,.\,.\,.\,,\,N \right\}$ then there must exist $n\in \mathbb{N}$ such that
In addition to this we show, using the same Fourier analytic methods, that if $A\subseteq \mathbb{N}$, then the set of $\varepsilon $-optimal return times
is syndetic for every $\varepsilon >0$. Moreover, we show that $R\left( A,\,P,\,\varepsilon \right)$ is dense in every sufficiently long interval, in particular we show that there exists an $L=L\left( \varepsilon ,P,A \right)$ such that
for all intervals $I$ of natural numbers with $\left| I \right|\,\ge \,L\,\text{and}\,c\left( \varepsilon ,\,P \right)\,=\,\exp \exp \,\left( -C\,{{\varepsilon }^{-1}}\,\log {{\varepsilon }^{-1}} \right).$