Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T14:39:14.077Z Has data issue: false hasContentIssue false

Orbites unipotentes et pôles d'ordre maximal de la fonction μ de Harish-Chandra

Published online by Cambridge University Press:  20 November 2018

Volker Heiermann*
Affiliation:
Institut für Mathematik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Allemagne e-mail: heierman@mathematik.hu-berlin.de
Rights & Permissions [Opens in a new window]

Résumé

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Dans un travail antérieur, nous avions montré que l’induite parabolique (normalisée) d’une représentation irréductible cuspidale $\sigma $ d’un sous-groupe de Levi $M$ d’un groupe $p$-adique contient un sous-quotient de carré intégrable, si et seulement si la fonction $\mu $ de Harish-Chandra a un pôle en $\sigma $ d’ordre égal au rang parabolique de $M$. L’objet de cet article est d’interpréter ce résultat en termes de fonctorialité de Langlands.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2006

References

Références

[B] Borel, A., Automorphic L-functions. Dans: Automorphic Forms, Representations and L-Functions. American Mathematical Society, Providence, RI, 1979, pp. 2761.Google Scholar
[Bo] Bourbaki, N., Éléments de mathématique. Ch. 4–6: Groupes et algèbres de Lie. Masson, Paris.Google Scholar
[BV] Barbash, D. et Vogan, D., Unipotent representations of complex semisimple groups. Ann. of Math. 121(1985), 41110.Google Scholar
[Ca] Carter, R. W., Finite groups of Lie type. Conjugacy classes and complex characters. John Wiley, New York, 1985.Google Scholar
[CKPS] Cogdell, J. W., Kim, H. H., Piatetski-Shapiro, I. I., et Shahidi, F., Functoriality for the classical groups. Publ. Math. Inst. Hautes Études Sci. 99(2004), 163233.Google Scholar
[HT] Harris, H. T. M. et Taylor, R., The geometry and cohomology of some simple Shimura varieties. Annals of Mathematics Studies 151, Princeton University Press, Princeton, NJ, 2001.Google Scholar
[H1] Heiermann, V., Décomposition spectrale et représentations spéciales d’un groupe réductif p-adique. J. Inst. Math. Jussieu 3(2004), no. 3, 327395.Google Scholar
[JS] Jiang, D. et Soudry, D., The local converse theorem for SO(2n + 1) and applications. Ann. of Math. 157(2003), no. 3, 743806.Google Scholar
[KL] Kazhdan, D. et Lusztig, G., Proof of the Deligne-Langlands conjecture for Hecke algebras. Invent. Math. 87(1987), no. 1, 153215.Google Scholar
[K] Kottwitz, R., Stable trace formula: cuspidal tempered terms. Duke Math. J. 51(1984), no. 3, 611650.Google Scholar
[L] Langlands, R. P., Representations of abelian algebraic groups. Pacific J. Math. Special Issue(1977) 231250.Google Scholar
[L1] Lusztig, G., Some examples of square integrable representations of semi-simple p-adic groups. Trans. Amer. Math. Soc. 277(1983), no. 2, 623653.Google Scholar
[L2] Lusztig, G., Classification of unipotent representations of simple p-adic groups. Internat.Math. Res. Notices (1995), no. 11, 517589.Google Scholar
[M] Moeglin, C., Normalisation des opérateurs d’entrelacement et réductibilité des induites de cuspidales; le cas des groupes classiques p-adiques. Ann. of Math. 151(2000), no. 2, 817847.Google Scholar
[PY] Prasad, G. et Yu, J.-K., On finite group actions on reductive groups and buildings. Invent. Math. 147(2002), no. 3, 545560.Google Scholar
[R] Rodier, F., Représentations de GL(n, k) où k est un corps p-adique. Dans: Séminaire Bourbaki 1981/1982 Astérisque 92-93, Soc. Math. France, Paris, 1982, pp. 201218.Google Scholar
[S] Shahidi, F., A proof of Langlands’ conjecture on Plancherel measures; complementary series for p-adic groups. Ann. of Math. 132(1990), no. 2, 273330.Google Scholar
[Si0] Silberger, A., Introduction to harmonic analysis on reductive p-adic groups. Mathematical Notes 23, Princeton University, Princeton, NJ, 1979.Google Scholar
[Si1] Silberger, A., Special representations of reductive p-adic groups are not integrable. Ann. of Math. 111(1980), no. 3, 571587.Google Scholar
[Si2] Silberger, A., Discrete series and classification for p-adic groups. I. Amer. J. Math. 103(1981), no. 6, 12411321.Google Scholar
[W] Waldspurger, J.-L., La formule de Plancherel pour les groupes p-adiques (d’après Harish-Chandra). J. Inst. Math. Jussieu 2(2003), no. 2, 235333.Google Scholar
[Z] Zhang, Z., L-packets and reducibilities. J. Reine Angew. Math. 510(1999), 83102.Google Scholar