Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-28T00:13:07.533Z Has data issue: false hasContentIssue false

Order and Spectrum Preserving Maps on Positive Operators

Published online by Cambridge University Press:  20 November 2018

Peter Šemrl*
Affiliation:
Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-10000 Ljubljana, Slovenia e-mail: peter.semrl@fmf.uni-lj.si
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We describe the general form of surjective maps on the cone of all positive operators that preserve order and spectrum. The result is optimal as shown by counterexamples. As an easy consequence, we characterize surjective order and spectrum preserving maps on the set of all self-adjoint operators.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2016

References

[1] Aupetit, B., Sur les transformations qui conservent le spectre. In: Banach algebras '97 (Blaubeuren), de Gruyter, Berlin, 1998, pp. 5578.Google Scholar
[2] Bresar, M. and Šemrl, P., An extension of the Gleason-Kahane-Żelazko theorem: a possible approach to Kaplansky's problem. Expo. Math. 26(2008), 269277.http://dx.doi.Org/10.101 6/j.exmath.2007.11.004 Google Scholar
[3] Choi, M. D., Hadwin, D., Nordgren, E., Radjavi, H., and Rosenthal, P., On positive linear maps preserving invertibility. J. Funct. Anal. 59(1984), 462469. http://dx.doi.Org/10.101 6/0022-1236(84)90060-0 Google Scholar
[4] Gehér, Gy. P., An elementary proof for the non-bijective version ofWigner's theorem. Phys. Lett. A 378(2014), 20542057.http://dx.doi.org/10.1016/j.physleta.2O14.05.039 Google Scholar
[5] Gleason, A. M., A characterization of maximal ideals. J. Analyse Math. 19(1967), 171172. http://dx.doi.org/10.1007/BF02788714 Google Scholar
[6] Horn, R. A. and Johnson, C. R., Matrix analysis. Cambridge University Press, Cambridge, 1985. http://dx.doi.Org/10.101 7/CBO9780511810817 Google Scholar
[7] Kahane, J.-P. and Żelazko, W., A characterization of maximal ideals in commutative Banach algebras. Studia Math. 29(1968), 339343.Google Scholar
[8] Kaplansky, I., Algebraic and analytic aspects of operator algebras. Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, 1, American Mathematical Society, Providence, RI, 1970.Google Scholar
[9] Molnár, L., Order-automorphisms of the set of bounded observables. J. Math. Phys. 42(2001), 59045909.http://dx.doi.Org/10.1063/1.1413224 Google Scholar
[10] Molnár, L., Characterizations of the automorphisms ofHilbert space effect algebras. Comm. Math. Phys. 223(2001), 437450.http://dx.doi.org/10.1007/s002200100549 Google Scholar
[11] Molnár, L., Selected preserver problems on algebraic structures of linear operators and on function spaces. Lecture Notes in Mathematics, 1895, Springer-Verlag, Berlin, 2007.Google Scholar
[12] Molnár, L., Nagy, G., and Szokol, P., Maps on density operators preserving quantum f-divergences. Quantum Inf. Process. 12(2013), 23092323.http://dx.doi.org/10.1007/s11128-013-0528-6 Google Scholar
[13] Šemrl, P., Symmetries on bounded observables: a unified approach based on adjacency preserving maps. Integral Equations Operator Theory 72(2012), 766.http://dx.doi.Org/10.1007/s00020-011-1917-9 Google Scholar
[14] Šemrl, P., Comparability preserving maps on Hilbert space effect algebras. Comm. Math. Phys. 313(2012), 375384.http://dx.doi.org/10.1007/s00220-012-1434-y Google Scholar
[15] Šemrl, P., Symmetries of Hilbert space effect algebras. J. London Math. Soc. 88(2013), 417436. http://dx.doi.org/10.1112/jlms/jdt021 Google Scholar
[16] Šemrl, P., Automorphisms of Hilbert space effect algebras. J. Phys. A 48(2015), 195301,18 pp.http://dx.doi.Org/10.1088/1751-8113/48/19/195301 Google Scholar
[17] Stormer, E., Positive linear maps of operator algebras. Acta Math. 110(1963), 233278.http://dx.doi.org/10.1007/BF02391 860 Google Scholar