Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-16T00:31:59.820Z Has data issue: false hasContentIssue false

Pairs of Consecutive Residues of Polynomials

Published online by Cambridge University Press:  20 November 2018

Kenneth S. Williams*
Affiliation:
University of Manchester, Manchester 13, England
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let p be a large prime and let ƒ(x) be a polynomial of fixed degree d ⩾ 4 with integral coefficients, say,

1.1

Recently Mordell (8) has considered the problem of estimating the least positive residue of ƒ(x) (mod p), that is, the unique integer l (0 ⩽ lp — 1) such that the congruence

1.2

is soluble for r = l but not for r = 0, 1, … , l — 1.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1967

References

1. Bierstedt, R. G. and Mills, W. H., On the bound for a pair of consecutive quartic residues of a prime, Proc. Amer. Math. Soc., 14 (1963), 628632.Google Scholar
2. Burgess, D. A., On Dirichlet characters of polynomials, Proc. London Math. Soc., 13 (1963), 537548.Google Scholar
3. Carlitz, L. and Uchiyama, S., Bounds for exponential sums, Duke Math. J., 24 (1957), 3741.Google Scholar
4. Dunton, M., Bounds for pairs of cubic residues, Proc. Amer. Math. Soc., 16 (1965), 330332.Google Scholar
5. Hua, L-K., Die Abschatzung von exponential Summen und ihre Anwendung in der Zahlentheorie, Enzyklopddie der Mathematischen-Wissenschaften, vol. 1, pt. 2 (1959), p. 39.Google Scholar
6. Lang, S. and Weil, A., Number of points of varieties infinite fields, Amer. J. Math., 16 (1954), 819827.Google Scholar
7. Min, S. H., On systems of algebraic equations and certain exponential sums, Quart. J. Math. Oxford, 18 (1947), 133142.Google Scholar
8. Mordell, L. J., On the least residue and non-residue of a polynomial, J. London Math. Soc., 38 (1963), 451453.Google Scholar
9. Perel'muter, G. I., On certain sums of characters, Uspehi Mat. Nauk, 18 (1963), 145149.Google Scholar
10. Weil, A., On the Riemann hypothesis in function fields, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 345347.Google Scholar