Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T17:27:26.141Z Has data issue: false hasContentIssue false

The Parisi formula is a Hamilton–Jacobi equation in Wasserstein space

Published online by Cambridge University Press:  28 January 2021

Jean-Christophe Mourrat*
Affiliation:
DMA, Ecole normale supérieure, CNRS, PSL University, Paris, France; Courant Institute of Mathematical Sciences, New York University, New York, NY, USA

Abstract

The Parisi formula is a self-contained description of the infinite-volume limit of the free energy of mean-field spin glass models. We showthat this quantity can be recast as the solution of a Hamilton–Jacobi equation in the Wasserstein space of probability measures on the positive half-line.

Type
Article
Copyright
© Canadian Mathematical Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work was partially supported by the ANR grants LSD (ANR-15-CE40-0020-03) and Malin (ANR-16-CE93-0003).

References

Ambrosio, L. and Feng, J., On a class of first order Hamilton-Jacobiequations in metric spaces. J. Differ. Equ. 256(2014), no. 7, 21942245.CrossRefGoogle Scholar
Ambrosio, L., Gigli, N., and Savaré, G., Gradient flows in metric spaces and in the space of probability measures. 2nd ed., Lectures in Mathematics ETH Zürich,Birkhäuser Verlag,Basel, Switzerland, 2008.Google Scholar
Barra, A., Del Ferraro, G., and Tantari, D., Mean field spin glasses treated with PDE techniques . Eur. Phys. J. B. 86(2013), no.7, 110.CrossRefGoogle Scholar
Barra, A., Di Biasio, A., and Guerra, F., Replica symmetry breaking in mean-field spin glasses through the Hamilton-Jacobi technique . J. Stat. Mech. TheoryExp. 22(2010), no. 9, P09006.Google Scholar
Benton, S. H. Jr., The Hamilton-Jacobi equation . Academic Press,New York, NY, London, UK, 1977.Google Scholar
Brankov, J. G. and Zagrebnov, V. A., On the description of thephase transition in the Husimi-Temperley model . J. Phys. A 16(1983), no. 10,22172224.CrossRefGoogle Scholar
Cardaliaguet, P., Notes on mean field games. Technical report, 2010.Google Scholar
Cardaliaguet, P. and Quincampoix, M., Deterministic differentialgames under probability knowledge of initial condition . Int. Game Theory Rev. 10(2008), no. 1,116.CrossRefGoogle Scholar
Cardaliaguet, P. and Souquière, A., A differential game witha blind player . SIAM J. Control. Optim. 50(2012), no. 4, 20902116.CrossRefGoogle Scholar
Crandall, M. G. and Lions, P.-L., Hamilton-Jacobi equations ininfinite dimensions. I. Uniqueness of viscosity solutions . J. Funct. Anal. 62(1985), no. 3,379396.CrossRefGoogle Scholar
Crandall, M. G. and Lions, P.-L., Hamilton-Jacobi equations ininfinite dimensions. II. Existence of viscosity solutions . J. Funct. Anal. 65(1986), no. 3,368405.CrossRefGoogle Scholar
Crandall, M. G. and Lions, P.-L., Hamilton-Jacobi equations ininfinite dimensions. III. J. Funct. Anal. 68(1986), no. 2, 214247.CrossRefGoogle Scholar
Evans, L. C., Partial differential equations . 2nd ed., Graduate Studies in Mathematics, 19,American Mathematical Society,Providence, RI, 2010.Google Scholar
Feng, J. and Katsoulakis, M., A comparison principle forHamilton-Jacobi equations related to controlled gradient flows in infinite dimensions . Arch. Ration. Mech. Anal. 192(2009), no. 2,275310.CrossRefGoogle Scholar
Feng, J. and Kurtz, T. G., Large deviations for stochasticprocesses, Mathematical Surveys and Monographs, 131, American Mathematical Society,Providence, RI, 2006.Google Scholar
Gangbo, W., Nguyen, T., and Tudorascu, A., Hamilton-Jacobi equations in the Wasserstein space . Methods Appl. Anal. 15(2008),no. 2, 155183.CrossRefGoogle Scholar
Gangbo, W. and Świch, A., Optimal transport and large numberof particles . Discrete Contin. Dyn. Syst. 34(2014), no. 4, 13971441.CrossRefGoogle Scholar
Guerra, F., Sum rules for the free energy in the mean field spin glass model . Fields Inst.Commun. 30(2001), 161.Google Scholar
Guerra, F., Broken replica symmetry bounds in the mean field spin glass model . Commun. Math.Phys. 233(2003), no. 1, 112.CrossRefGoogle Scholar
Mézard, M., Parisi, G., and Virasoro, M., Spin glass theory and beyond: an introduction to the replica method and its applications . Vol. 9. WorldScientific Publishing Company, 1987.Google Scholar
Mourrat, J.-C., Hamilton-Jacobi equations for mean-field disordered systems . Ann. Henri Lebesgue(2018), to appear.Google Scholar
Mourrat, J.-C., Hamilton-Jacobi equations for finite-rank matrix inference . Ann. Appl. Probab. 30(2020), no. 5, 22342260.CrossRefGoogle Scholar
Mourrat, J.-C., Nonconvex interactions in mean-field spin glasses . Probab. Math. Phys. 2020, to appear.Google Scholar
Mourrat, J.-C. and Panchenko, D., Extending the Parisi formulaalong a Hamilton-Jacobi equation . Electron. J. Probab. 25(2020), no. 23, 17.CrossRefGoogle Scholar
Newman, C., Percolation theory: A selective survey of rigorous results . In: Advances in multiphase flowand related problems, (G. Papanicolaou) SIAM,Philadelphia, PA, 1986.Google Scholar
Panchenko, D., The Sherrington-Kirkpatrick model, Springer Monographs in Mathematics, Springer,New York, NY, 2013.CrossRefGoogle Scholar
Panchenko, D. and Talagrand, M., Guerra’s interpolation usingDerrida-Ruelle cascades. Unpublished manuscript. Preprint, 2007. arXiv:0708.3641.CrossRefGoogle Scholar
Parisi, G., A sequence of approximated solutions to the SK model for spin glasses . J. Phys. A 13(1980), no. 4, L115L121.CrossRefGoogle Scholar
Rao, M. M. and Ren, Z. D., Theory of Orlicz spaces, Monographsand Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker, Inc.,New York, NY, 1991.Google Scholar
Talagrand, M., Free energy of the spherical mean field model . Probab. Theory Related Fields 134(2006), no. 3, 339382.CrossRefGoogle Scholar
Talagrand, M., The Parisi formula . Ann. Math. 163(2006), no.1, 221263.CrossRefGoogle Scholar
Talagrand, M., Mean field models for spin glasses. Vol. I. Ergebnisse der Mathematik und ihrer Grenzgebiete, 54,Springer-Verlag, Berlin, Germany, 2011.Google Scholar
Talagrand, M., Mean field models for spin glasses. Vol. II . Ergebnisse der Mathematik und ihrer Grenzgebiete, 55,Springer, Heidelberg, Germany, 2011.Google Scholar
Thurston, W. P., On proof and progress in mathematics . Bull. Amer. Math. Soc. 30(1994), no. 2, 161177.CrossRefGoogle Scholar
Villani, C., Topics in optimal transportation, Graduate Studies in Mathematics, 58, American MathematicalSociety, Providence, RI, 2003.Google Scholar