Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T12:41:09.037Z Has data issue: false hasContentIssue false

Plane Curves With Nodes

Published online by Cambridge University Press:  20 November 2018

Robert Treger*
Affiliation:
Pennsylvania State University, Delaware County Campus, Media, Pennsylvania
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A smooth algebraic curve is birationally equivalent to a nodal plane curve. One of the main problems in the theory of plane curves is to describe the situation of nodes of an irreducible nodal plane curve (see [16, Art. 45], [10], [7, Book IV, Chapter I, §5], [12, p. 584], and [3]).

Let n denote the degree of a nodal curve and d the number of nodes. The case (AZ, d) — (6,9) has been analyzed by Halphen [10]. It follows from Lemma 3.5 and Proposition 3.6 that this is an exceptional case. The case d ≦n(n + 3)/6, d(n — 1)(n — 2)/2, and (n, d) ≠ (6,9) was investigated by Arbarello and Cornalba [3]. We present a simpler proof (Corollary 3.8).

We consider the main case which is particularly important due to its applications to the moduli variety of curves, compare [19, Chapter VIII, Section 4]. Let Vn,d be the variety of irreducible curves of degree n with d nodes and no other singularities such that each curve of Vn,d can be degenerated into n lines in general position (see [17]).

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1989

References

1. Albanese, G., Sulle condizioni perché una curva algebrica riducibile si possa considerare come limite di una curva algebrica irreducible, Rend. Circ. Mat. Palermo 52 (1928), 105150.Google Scholar
2. Arbarello, E. and Comalba, M., Su una proprieta notevole dei morfismi di una curva a moduli generali in uno spazio proiettivo, Rend. Sem. Mat. Univers. Politecn. Torino 38 (1980), 8799.Google Scholar
3. Arbarello, E. and Comalba, M., Footnotes to a paper of Beniamino Segre, Math. Ann. 256 (1981), 341362.Google Scholar
4. Arbarello, E., Cornalba, M., Griffiths, P.A. and Harris, J., Geometry of algebraic curves, vol. I (Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1984); vol II (to appear).Google Scholar
5. Briançon, J. and Galligo, A., Deformations distinguées d'un point de C2 ou R2, Astérisque 7-8 (1973), 129138.Google Scholar
6. Briançon, J., Granger, M. and Speder, J.P., Sur le schéma de Hilbert d'une courbe plane, Ann. scient. Éc. Norm. Sup. 14 (1981), 125.Google Scholar
7. Coolidge, J.L., A treatise on algebraic plane curves (Oxford University Press, Oxford, 1931).Google Scholar
8. Fogarty, J., Algebraic families on an algebraic surface, Amer. J. Math. 90 (1968), 511521.Google Scholar
9. Griffiths, P. and Harris, J., Principles of algebraic geometry (Wiley-Interscience, New York, 1978).Google Scholar
10. Halphen, G.H., Sur les courbes planes du sixième degré à neuf points doubles, Bull. Soc. Math. France 10 (1882), 162172.Google Scholar
11. Hironaka, H., On the arithmetic genera and the effective genera of algebraic curves, Mem. Kyoto Univ., ser. A, 30 (1957) 177195.Google Scholar
12. Loria, G. Spezielle ebene algebriasche Kurven von hôherer Ordnung, Enzikl. der math. Wissenschaften 2 (Teubner, Leipzig, 19031915).Google Scholar
13. Mumford, D., Lectures on curves on an algebraic surface, Annals of Math. Studies 59 (Princeton, 1966).Google Scholar
14. Nobile, A., On specializations of curves. I, Trans. Amer. Math. Soc. 282 (1984), 739748.Google Scholar
15. Piene, R., Polar classes of singular varieties, Ann. Scient. Éc. Norm. Sup. 11 (1978), 247276.Google Scholar
16. Salmon, G., A treatise on the higher plane curves, 2nd ed. (Hodges, Foster, and Co., Dublin, 1873).Google Scholar
17. Severi, F., Vorlesungen tiber algebraische Géométrie (Teubner, Leipzig, 1921) — cf. Anhang F, 307353.Google Scholar
18. Wahl, J., Deformations of plane curves with nodes and cusps, Amer. J. Math. 96 (1974), 529- 577.Google Scholar
19. Zariski, O., Algebraic surfaces, 2nd suppl. éd., Ergebnisse 61 (Springer-Verlag, Heidelberg, 1971).Google Scholar
20. Zariski, O., Dimension-theoretic characterization of maximal irreducible algebraic systems of plane nodal curves of a given order n and with a given number d of nodes, Amer. J. Math. J04 (1982), 209226.Google Scholar