Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T06:00:39.742Z Has data issue: false hasContentIssue false

Pontryagin’s Maximum Principle for the Loewner Equation in Higher Dimensions

Published online by Cambridge University Press:  20 November 2018

Oliver Roth*
Affiliation:
Department of Mathematics, University of Würzburg, Emil Fischer Straβe 40, 97074 Würzburg, Germany e-mail: roth@mathematik.uni-wuerzburg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we develop a variational method for the Loewner equation in higher dimensions. As a result we obtain a version of Pontryagin’s maximum principle from optimal control theory for the Loewner equation in several complex variables. Based on recent work of Arosio, Bracci, and Wold, we then apply our version of the Pontryagin maximum principle to obtain first-order necessary conditions for the extremal mappings for a wide class of extremal problems over the set of normalized biholomorphic mappings on the unit ball in ${{\mathbb{C}}^{n}}$.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2015

References

[1] Abate, M., Bracci, F., Contreras, M.D., and Díaz, S.-Madrigal, The evolution of Loewner's differential equations. Eur. Math. Soc. Newsl. 78(2010), 3138.Google Scholar
[2] Arosio, L., Resonances in Loewner equations. Adv. Math. 227(2011), no. 4, 14131435.http://dx.doi.org/10.1016/j.aim.2011.03.010 Google Scholar
[3] Arosio, L. and Bracci, F., Infinitesimal generators and the Loewner equation on complete hyperbolic manifolds. Anal. Math. Phys. 1(2011), no. 4, 337350.http://dx.doi.org/10.1007/s13324-011-0020-3 Google Scholar
[4] Arosio, L., Bracci, F., Hamada, H., and Kohr, G., An abstract approach to Loewner chains. J. Anal. Math. 119(2013), 89114.http://dx.doi.org/10.1007/s11854-013-0003-4 Google Scholar
[5] Arosio, L., Bracci, F., Wold, E. F., Solving the Loewner PDE in complete hyperbolic starlike domains of ℂN. Adv. Math. 242(2013), 209216.http://dx.doi.org/10.1016/j.aim.2013.02.024 Google Scholar
[6] Bracci, F., Contreras, M. D., and Dvaz-Madrigal, S., Evolution families and the Loewner equation. II. Complex hyperbolic manifolds. Math. Ann. 344(2009), no. 4, 947962.http://dx.doi.org/10.1007/s00208-009-0340-x Google Scholar
[7] Bracci, F., Contreras, M. D., and Dvaz-Madrigal, S., Evolution families and the Loewner equation. I. The unit disk. J. Reine Angew. Math. 672(2012), 137.http://dx.doi.org/10.1515/CRELLE.2011.167 Google Scholar
[8] Bracci, F., Graham, I., Hamada, H., and Kohr, G., Variation of Loewner chains, extreme and support points in the class S0 in higher dimensions. arxiv:1402.5538Google Scholar
[9] Cartan, H., Sur la possibilité d’étendre aux fonctions de plusieurs variables complexes la théorie des fonctions univalentes. 129–155. Note added to P. Montel, Leçons sur les fonctions univalentes ou multivalentes. Gauthier-Villars, Paris, 1933.Google Scholar
[10] Docquier, F. and Grauert, H., Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten. Math. Ann. 140(1960), 94123.http://dx.doi.org/10.1007/BF01360084 Google Scholar
[11] Duren, P. L., Univalent functions. Grundlehren der Mathematischen Wissenschaften, 259, Springer-Verlag, New York, 1983.Google Scholar
[12] Duren, P. L., Graham, I., Hamada, H., and Kohr, G., Solutions for the generalized Loewner differential equation in several complex variables. Math. Ann. 347(2010), no. 2, 411435.http://dx.doi.org/10.1007/s00208-009-0429-2 Google Scholar
[13] Fleming, W. H. and Rishel, R.W., Deterministic and stochastic optimal control. Applications of Mathematics, 1, Springer-Verlag, Berlin-New York, 1975.Google Scholar
[14] Friedland, S. and Schiffer, M., Global results in control theory with applications to univalent functions. Bull. Amer. Math. Soc. 82(1976), no. 6, 913–915.http://dx.doi.org/10.1090/S0002-9904-1976-14211-5 Google Scholar
[15] Friedland, S. and Schiffer, M., On coefficient regions of univalent functions. J. Analyse Math. 31(1977), 125168.http://dx.doi.org/10.1007/BF02813301 Google Scholar
[16] Goodman, G. S., Univalent functions and optimal control. Thesis (Ph.D.), Stanford University, 1967.Google Scholar
[17] Graham, I., Hamada, H., and Kohr, G., Parametric representation of univalent mappings in several complex variables. Canad. J. Math. 54(2002), no. 2, 324351.http://dx.doi.org/10.4153/CJM-2002-011-2 Google Scholar
[18] Graham, I., Hamada, H., Kohr, G., and Kohr, M., Asymptotically spirallike mappings in several complexvariables. J. Anal. Math. 105(2008), 267302.http://dx.doi.org/10.1007/s11854-008-0037-1 Google Scholar
[19] Graham, I., Hamada, H., Kohr, G., and Kohr, M., Extremal properties associated with univalent subordination chains in ℂn. Math. Ann. 359(2014), no. 1–2, 6199.http://dx.doi.org/10.1007/s00208-013-0998-y Google Scholar
[20] Graham, I. and Kohr, G., Geometric function theory in one and higher dimensions. Monographs and Textbooks in Pure and Applied Mathematics, 255, Marcel Dekker Inc., New York, 2003.Google Scholar
[21] Graham, I., Kohr, G., and Kohr, M., Parametric representation and asymptotic starlikeness in ℂn. Proc. Amer. Math. Soc. 136(2008), no. 11, 39633973.http://dx.doi.org/10.1090/S0002-9939-08-09392-1 Google Scholar
[22] Graham, I., Kohr, G., and Pfaltzgraff, J., Parametric representation and linear functionals associated with extension operators for biholomorphic mappings. Rev. Roumaine Math. Pures Appl. 52(2007),no. 1, 4768.Google Scholar
[23] Hamilton, R. S., The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc. (N.S.) 7(1982), no. 1, 65222.http://dx.doi.org/10.1090/S0273-0979-1982-15004-2 Google Scholar
[24] Löwner, K., Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I. Math. Ann. 89(1923), no. 1–2, 103121.http://dx.doi.org/10.1007/BF01448091 Google Scholar
[25] Lee, E. B. and Markus, L., Foundations of optimal control theory. John Wiley, New York-London-Syney, 1967.Google Scholar
[26] Pommerenke, Ch., Univalent functions. Vandenhoeck & Ruprecht, Göttingen, 1975.Google Scholar
[27] Popov, V. I., L. S. Pontrjagin's maximum principle in the theory of univalent functions. Dokl. Akad. Nauk SSSR 188(1969), 532–534; translation in Siberian Math. J. 10(1969), 11611164.Google Scholar
[28] Prokhorov, D. V., Bounded univalent functions. In: Handbook of complex analysis: geometric function theory, Vol. I, North Holland, Amsterdam, 2002, pp. 207228.Google Scholar
[29] Prokhorov, D. V., Reachable set methods in extremal problems for univalent functions. Saratov University Publishing House, Saratov, 1993.Google Scholar
[30] Prokhorov, D. V., Sets of values of systems of functionals in classes of univalent functions. (Russian) Mat. Sb.181(1990), no. 12, 1659–1677; translation in Math. USSR-Sb. 71(1992), no. 2, 499516.Google Scholar
[31] Roth, O., Pontryagin's maximum principle in geometric function theory. Complex Variables Theory Appl. 41(2000), no. 4, 391426.http://dx.doi.org/10.1080/17476930008815264 Google Scholar
[32] Schleiβinger, S., On support points in the class S0(Bn). Proc. Amer. Math. Soc., to appear.http://dx.doi.org/10.1090/S0002-9939-2014-12106-X Google Scholar
[33] Voda, M. I., Loewner theory in several complex variables and related problems. Thesis(Ph.D.), University of Toronto, 2011.Google Scholar