Published online by Cambridge University Press: 20 November 2018
The idea of considering the set of the elements of a group as a space, provided with a topology, measure, or metric, connected somehow with the group operation, has been used often in the work of E. Cartan and others. In the present paper we shall study a very special group whose space can be embedded naturally into a projective plane and where the straight lines have a very simple group-theoretical interpretation. It remains to be seen whether this geometrical embedding in a projective space can be extended to other classes of groups and whether the method could become an instrument of geometrical investigation, like co-ordinates or reflections. In the final section it is shown how a geometrical theorem may lead to relations within the group.