Article contents
Quelques résultats sur les équations $a{{x}^{p}}\,+\,b{{y}^{p}}\,=\,c{{z}^{2}}$
Published online by Cambridge University Press: 20 November 2018
Abstract
Let $p$ be a prime number ≥ 5 and $a,\,b,\,c$ be non zero natural numbers. Using the works of K. Ribet and A. Wiles on the modular representations, we get new results about the description of the primitive solutions of the diophantine equation $a{{x}^{p}}\,+\,b{{y}^{p}}\,=\,c{{z}^{2}}$, in case the product of the prime divisors of $abc$ divides $2\ell $, with $\ell $ an odd prime number. For instance, under some conditions on $a,\,b,\,c$, we provide a constant $f(a,\,b,\,c)$ such that there are no such solutions if $p\,>\,f(a,\,b,\,c)$. In application, we obtain information concerning the $\mathbb{Q}$-rational points of hyperelliptic curves given by the equation ${{y}^{2}}\,=\,{{x}^{p}}\,+\,d$ with $d\,\in \,\mathbb{Z}$.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2006
References
- 10
- Cited by