Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T11:03:30.826Z Has data issue: false hasContentIssue false

Regularity of Standing Waves on Lipschitz Domains

Published online by Cambridge University Press:  20 November 2018

Michael Taylor*
Affiliation:
Mathematics Department, University of North Carolina, Chapel Hill NC 27599, USA, e-mail: met@math.unc.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We analyze the regularity of standing wave solutions to nonlinear Schrödinger equations of power type on bounded domains, concentrating on Lipschitz domains. We establish optimal regularity results in this setting, in Besov spaces and in Hölder spaces.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2013

References

[1] Berg, J. and Löfström, J., Interpolation spaces. Grundlehren der mathematischen Wissenschaften, Springer-Verlag, New York, 1976.Google Scholar
[2] Dahlberg, B. E. J., Estimates of harmonic measure. Arch. Rational Mech. Anal. 65(1977), no. 3, 275288. http://dx.doi.org/10.1007/BF00280445 Google Scholar
[3] Dindos, M. and Mitrea, M., Semilinear Poisson problems in Sobolev-Besov spaces in Lipschitz domains. Publ. Mat. 46(2002), no. 2, 353403. http://dx.doi.org/10.5565/PUBLMAT 46202 03 Google Scholar
[4] Gilbarg, D. and Trudinger, N., Elliptic partial differential equations of second order. Second ed., Grundlehren der MathematischenWissenschaften, 224, Springer-Verlag, Berlin, 1983.Google Scholar
[5] Jerison, D. and Kenig, C., The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130(1995), no. 1, 161219. http://dx.doi.org/10.1006/jfan.1995.1067 Google Scholar
[6] Mitrea, M. and Taylor, M., Potential theory on Lipschitz domains in Riemannian manifolds: Lp, Hardy, and Hölder space results. Comm. Anal. Geom. 2(2001), no. 2, 369421.Google Scholar
[7] Mitrea, M., Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev-Besov space results and the Poisson problem. J. Funct. Anal. 176(2000), no. 1, 179. http://dx.doi.org/10.1006/jfan.2000.3619 Google Scholar
[8] Mitrea, M., Local regularity results for second order elliptic systems on Lipschitz domains. Funct. Approx. Comment.Math. 40(2009), part 2, 175184. http://dx.doi.org/10.7169/facm/1246454027 Google Scholar
[9] Pohozaev, S., Eigenfunctions of the equation Δu + λf(u) = 0. Dokl. Akad. Nauk SSSR 165(1965), 3639.Google Scholar
[10] Taylor, M. E., Partial differential equations. Basic theory. Texts in Applied Mathematics, 23, Springer-Verlag, New York, 1996.Google Scholar
[11] Triebel, H., Function spaces in Lipschitz domains and on Lipschitz manifolds, characteristic functions as pointwise multipliers. Rev. Mat. Complut. 15(2002), no. 2, 475524.Google Scholar
[12] Verchota, G., Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains. J. Funct. Anal. 59(1984), no. 3, 572611. http://dx.doi.org/10.1016/0022-1236(84)90066-1 Google Scholar