Published online by Cambridge University Press: 20 November 2018
In [3] Hay proves generalizations of Rice's Theorem and the Rice-Shapiro Theorem for differences of recursively enumerable sets (d.r.e. sets). The original Rice Theorem [5, p. 3G4, Corollary B] says that the index set of a class C of r.e. sets is recursive if and only if C is empty or C contains all r.e. sets. The Rice-Shapiro Theorem conjectured by Rice [5] and proved independently by McNaughton, Shapiro, and Myhill [4] says that the index set of a class C of r.e. sets is r.e. if and only if C is empty or C consists of all r.e. sets which extend some element of a canonically enumerable class of finite sets. Since a d.r.e. set is a difference of r.e. sets, a d.r.e. set has an index associated with it, namely, the pair of indices of the r.e. sets of which it is the difference.