Published online by Cambridge University Press: 20 November 2018
In the last few years many results have appeared which deal with questions of how various algebraic properties of the symmetric elements of a ring with involution, or the subring they generate, affect the structure of the whole ring. If the ring has an identity, similar questions may be posed by making assumptions about the symmetric units or subgroup they generate. Little seems to be known about the special units which exist in rings with involution, although several questions of importance have existed for some time. For example, given a simple ring with appropriate additional assumptions, is the unitary group essentially simple? Also, what can be said about the structure of subspaces invariant under conjugation by all unitary or symmetric units (see [7])?