Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T02:02:44.655Z Has data issue: false hasContentIssue false

The Schreier Technique for Subalgebras of a Free Lie Algebra

Published online by Cambridge University Press:  20 November 2018

Shmuel Rosset
Affiliation:
Tel-Aviv University, Ramat-Aviv 69978, Israel, e-mail: rosset@math.tau.ac.il, alonwa@math.tau.ac.il
Alon Wasserman
Affiliation:
Tel-Aviv University, Ramat-Aviv 69978, Israel, e-mail: rosset@math.tau.ac.il, alonwa@math.tau.ac.il
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In group theory Schreier's technique provides a basis for a subgroup of a free group. In this paper an analogue is developed for free Lie algebras. It hinges on the idea of cutting a Hall set into two parts. Using it, we show that proper subalgebras of finite codimension are not finitely generated and, following M. Hall, that a finitely generated subalgebra is a free factor of a subalgebra of finite codimension.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1997

References

1. Bahturin, Yu. A., Identical relations in Lie algebras, VNU Science Press, Utrecht, The Netherlands, 1987.Google Scholar
2. Baumslag, B., Free Lie algebras and free groups, J. London Math. Soc. (2) 4(1972), 523532.Google Scholar
3. Bourbaki, N., Groupes et algèbres de Lie, chapitres 2 et 3, Éléments de mathématique, Hermann, Paris, 1972.Google Scholar
4. Hall, M., Jr., Coset representations in free groups, Trans. Amer.Math. Soc. 67(1949), 421432.Google Scholar
5. Hall, M., A basis for free Lie rings and higher commutators in free groups, Proc. Amer.Math. Soc. 1(1950), 575581.Google Scholar
6. Hall, M., A topology for free groups and related groups, Anal. Math. 52(1950), 127139.Google Scholar
7. Hall, M., Jr. and Radó, T., On Schreier systems in free groups, Trans. Amer. Math. Soc. 64(1948), 386408.Google Scholar
8. Lazard, M., Groupes, anneaux de Lie et problème de Burnside, Istituto Matematico dell’ Università di Roma, 1960.Google Scholar
9. Lewin, J., Free modules over free algebras and free group algebras: the Schreier technique, Trans. Amer. Math. Soc. 145(1969), 455465.Google Scholar
10. Reutenauer, C.,Free Lie algebras, LondonMathematical SocietyMonographs, NewSeries, Oxford Science Publications, Oxford, 1993.Google Scholar
11. Rosenmann, A. and Rosset, S., Ideals of finite codimension in free algebras and the fc-localization, Pacific J. Math. 162(1994), 351371.Google Scholar
12. Schreier, O., Die Untergruppen der freien Gruppen, Abh. Math. Sem. Univ. Hamburg 5(1927), 161183.Google Scholar
13. Schützenberger, M.-P., Sur une propriété combinatoire des algèbres de Lie libres pouvant être utilisée dans un problème de mathémathiques appliquées, Séminaire P. Dubreil, M.-L. Dubreil-Jacotin et C. Pisot, Facult é des Sciences, Paris, 1958.59.Google Scholar
14. Viennot, G., Algèbres de Lie libres et monöıdes libres, Lecture Notes inMathematics, 691, Springer, Berlin, 1978.Google Scholar
15. Širšov, A.I., Subalgebras of free Lie algebras, Mat. Sb. (N.S.) 33(1953), 441452. (in Russian).Google Scholar
16. Witt, E., Die Unterringe der freien Lieschen Ringe, Math. Z. 64(1956), 195216.Google Scholar