Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T04:01:16.003Z Has data issue: false hasContentIssue false

Singularity of Monomial Curves in A3 and Gorenstein Monomial Curves in A4

Published online by Cambridge University Press:  20 November 2018

Jürgen Kraft*
Affiliation:
University of Puerto Rico, May aguez, Puerto Rico
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let 2 ≦ sN and {n1, …, ns) ⊆ N*. In 1884, J. Sylvester [13] published the following well-known result on the singularity degree S of the monomial curve whose corresponding semigroup is S: = 〈n1, …, ns): If s = 2, then

Let K: = –Z\S and

for all 1 ≦ is. We introduce the invariant

of S involving a correction term to the Milnor number 2δ [4] of S. As a modified version and extension of Sylvester's result to all monomial space curves, we prove the following theorem: If s = 3, then

We prove similar formulas for s = 4 if S is symmetric.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1985

References

1. Bresinsky, H., On prime ideals with generic zero xi = tn1 , Proc. Amer. Math. Soc. 47 (1975), 329332.Google Scholar
2. Bresinsky, H., Symmetric semigroups of integers generated by 4 elements, Manuscripta Math. 17 (1975), 205219.Google Scholar
3. Buchweitz, R., On deformations of monomial curves, Séminaire sur les singularités des surfaces (École Polytechnique, Paris, 1977).Google Scholar
4. Greuel, G. -M., Kohomologische Methoden in der Théorie isolierter Singuläritaten (Habilitationsschrift Rheinische Friedrich-Wilhelms-Universität, Bonn, 1979).Google Scholar
5. Guy, R., Unsolved problems in number theory, in Unsolved problems in intuitive mathematics, vol. I (Springer, New York-Heidelberg-Berlin, 1981).CrossRefGoogle Scholar
6. Herzog, J., Generators and relations of abelian semigroups and semigrouprings, Manuscripta Math. J (1970), 175193.Google Scholar
7. Herzog, J., Deformationen von Cohen-Macaulay Algebren, J. Reine Angew. Math. 318 (1980), 83105.Google Scholar
8. Herzog, J. and Kunz, E., Die Wertehalbgruppe eines lokalen Rings der Dimension 1, Ber. Heidelberger Akad. Wiss. 2. Abh. (1971).CrossRefGoogle Scholar
9. Johnson, S., A linear Diophantine problem, Can. J. Math. 12 (1960), 390398.Google Scholar
10. Kantor, J. -M., Dérivations sur les singularités quasihomogènes: cas des courbes, C. R. Acad. Sci. Paris, 287A (1978), 11171119, and 288A (1979), 697.Google Scholar
11. Schaps, M., Deformations of Cohen-Macaulay schemes of codimension 2 and non-singular deformations of space curves, Am. J. Math. 99 (1977), 669684.Google Scholar
12. Seidenberg, A., Derivations and integral closure, Pacific J. Math. 16 (1966), 167173.Google Scholar
13. Sylvester, J., Mathematical questions, with their solutions, Educational Times 41 (1884), 21.Google Scholar
14. Wahl, J., Derivations of negative weight and non-smoothability of certain singularities, Math. Ann. 258 (1982), 383398.Google Scholar