Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T19:29:14.569Z Has data issue: false hasContentIssue false

The Sixteenth Power Residue Character of 2

Published online by Cambridge University Press:  20 November 2018

A. L. Whiteman*
Affiliation:
The Institute for Advanced Study and University of Southern California
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The problem of giving a criterion for the eth power residue character of 2 has long interested number theorists. This paper is primarilyconcerned with the cases e = 4, 8 and 16. Gauss (8) proved that 2 is a biquadratic residue of a prime p of the form 4n + 1 if and only if p is representable as x2 + 64y2.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1954

References

1. Aigner, A., Kriterion zum 8. and 16. Potenzcharacter der Reste 2 und — 2, Deutsche Math., 4 (1939), 44–52.Google Scholar
2. Bachmann, P., Die Lehre von der Kreisteilung (Leipzig, 1872).Google Scholar
3. Beeger, N. G. W. H., A problem of the theory of numbers and its history, Nieuw Arch. Wiskunde (2), 22 (1948), 306–309.Google Scholar
4. Cunningham, A., On 2 as a 16-ic residue, Proc. London Math. Soc. (1), 27 (1895), 85–122.Google Scholar
5. Dickson, L. E., On the congruence xn + yn + zn ≡ 0 (mod p), J. Reine Angew. Math., 185 (1909), 134–142.Google Scholar
6. Dickson, L. E., Cyclotomy, higher congruences, and Waring's problem, Amer. J. Math., 67 (1935), 391–424.Google Scholar
7. Dirichlet, G. L., Ueber den biquadratischen Character der Zahl “Zwei,” J. Reine Angew. Math., 57 (1860), 187–188; or Werke, 2 (1897), 261–262.Google Scholar
8. Gauss, C. F., Werke, 2 (1876), 67–92.Google Scholar
9. Goldscheider, F., Das Reziprozitätsgesetz der 8-ten Potenzreste, Wissensch. Beitr. z. Progr. d. Luisenstâdischen Realgymn. (Berlin, 1899), 29 pp.Google Scholar
10. Hasse, H., Vorlesungen über Zahlentheorie (Berlin, Göttingen, Heidelberg, 1950).Google Scholar
11. Hurwitz, A., Ueber die Kongruenz axe + bye + cze ≡ 0 (mod p), J. Reine Angew. Math., 136 (1909), 272–292; or Mathematische Werke, 2 (1933), 430–445.Google Scholar
12. Jacobi, C. G. J., Ueber die Kreisteilung und ihre Anwendung auf die Zahlentheorie, J. Reine Angew. Math., 30 (1846), 166–182; or Gesammelte Werke, 6 (1891), 254–274.Google Scholar
13. Reuschle, C. G., Mathematische Abhandlung, enthaltend neue Zahlentheoretische Tabellen, Programm zum Schlusse des Schuljahrs 1855-56 am Königlichen Gymnasium zu Stuttgart (1856), 61 pp.Google Scholar
14. Western, A. E., Some criteria for the residues of eighth and other powers, Proc. London Math. Soc. (2), 9 (1911), 244–272.Google Scholar