Published online by Cambridge University Press: 20 November 2018
Let ${{b}_{1}},...,{{b}_{5}}$ be non-zero integers and $n$ any integer. Suppose that ${{b}_{1}}+\cdot \cdot \cdot +{{b}_{5}}\equiv n$ (mod 24) and $\left( {{b}_{i}},{{b}_{j}} \right)=1$ for $1\le i<j\le 5$. In this paper we prove that
(i) if all ${{b}_{j}}$ are positive and $n\gg \max {{\left\{ \left| {{b}_{j}} \right| \right\}}^{41+\varepsilon }}$, then the quadratic equation ${{b}_{1}}p_{1}^{2}+\cdot \cdot \cdot +{{b}_{5}}p_{5}^{2}=n$ is soluble in primes ${{p}_{j}}$, and
(ii) if ${{b}_{j}}$ are not all of the same sign, then the above quadratic equation has prime solutions satisfying ${{p}_{j}}\ll \sqrt{\left| n \right|}+\max {{\left\{ \left| {{b}_{j}} \right| \right\}}^{20+\varepsilon }}$.