Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-29T08:30:58.723Z Has data issue: false hasContentIssue false

Spaces in Which Special Sets are z-Embedded

Published online by Cambridge University Press:  20 November 2018

Robert L. Blair*
Affiliation:
Ohio University, Athens, Ohio
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A subset S of a topological space X is z-embedded in X in case each zero-set of S is the restriction to S of a zero-set of X. (A zero-set is the set of zeros of a real-valued continuous function.) For the basic theory of z-embedding, see [3] and [4] (and see [4] for a comprehensive bibliography of relevant papers).

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1976

References

Referenxes

1. Blair, R. L., On a theorem of I shell concerning extremally disconnected P-spaces, Arch. Math. 12 (1961), 434.Google Scholar
2. Blair, R. L., On v-embedded sets in topological spaces, TOPO 72—General Topology and its Applications (Second Pittsburgh International Conference, December 18-22, 1972), Lecture Notes in Math., Vol. 378 (Springer-Verlag, Berlin-Heidelberg-New York, 1974), pp. 4679.Google Scholar
3. Blair, R. L., Filter characterizations of s-, C*-, and C-embeddings, Fund. Math. 90 (1976), 285300.Google Scholar
4. Blair, R. L. and Hager, A. W., Extensions of zero-sets and of real-valued functions, Math. Zeit. 136 (1974), 4152.Google Scholar
5. Blair, R. L. and Hager, A. W., Notes on the Hewitt realcompactification of a product, Gen. Top. Appl. 5 (1975), 18.Google Scholar
6. Blair, R. L. and Hager, A. W., z-embedding in (3X X (3 Y, to appear.Google Scholar
7. Bourbaki, N., Elements of mathematics: General topology (Hermann, Paris; Addison-Wesley, Reading, Mass., 1966).Google Scholar
8. Corson, H. H., Normality in subsets of product spaces, Amer. J. Math. 81 (1959), 785796.Google Scholar
9. Engelking, R., Outline of general topology (PWN, Warsaw, 1965; English transi., North- Holland, Amsterdam; Interscience, New York, 1968).Google Scholar
10. Fine, N. J. and Gillman, L., Extension of continuous functions in /3N, Bull. Amer. Math. Soc. 66 (1960), 376381.Google Scholar
11. Gillman, L. and Jerison, M., Rings of continuous functions (Van Nostrand, Princeton, 1960).Google Scholar
12. Hager, A. V., Reynolds, G. D., and Rice, M. D., B or el-complete topological spaces, Fund. Math. 75 (1972), 135143.Google Scholar
13. Henriksen, M. and Johnson, D. G., On the structure of a class of archimedean lattice-ordered algebras, Fund. Math. 50 (1961), 7394.Google Scholar
14. Isbell, J. R., Zero-dimensional spaces, Tôhoku Math. J., Ser. II 7 (1955), 18.Google Scholar
15. Katétov, M., Measures in fully normal spaces, Fund. Math. 38 (1951), 7384.Google Scholar
16. Kelley, J. L., General topology (Van Nostrand, New York, 1955).Google Scholar
17. Levy, R. F., Almost-F-spaces and Lu sin s hypothesis, Notices Amer. Math. Soc. 22 (1975), A-582.Google Scholar
18. Mack, J. E. and Johnson, D. G., The Dedekind completion of C(X), Pacific J. Math. 20 (1967), 231243.Google Scholar
19. McArthur, V. G., Hewitt realcompactifications of products, Can. J. Math. 22 (1970), 645655.Google Scholar
20. Mrowka, S., Some properties of Q-spaces, Bull. Acad. Polon. Sci. CI. I l l 5 (1957), 947950.Google Scholar
21. Mrowka, S., On the unions of Q-spaces, Bull. Acad. Polon. Sci. CI. I l l 6 (1958), 365368.Google Scholar
22. Mrowka, S., Some comments on the author's example of a non-S?-compact space, Bull. Acad. Polon. Sci. Ser. Math. Astronom. Phys. 18 (1970), 443448.Google Scholar
23. Noble, N., C-embedded subsets of products, Proc. Amer. Math. Soc. 31 (1972), 613614.Google Scholar
24. Noble, N. and Ulmer, M., Factoring functions on cartesian products, Trans. Amer. Math. Soc. 163 (1972), 329339.Google Scholar
25. Ostaszewski, A. J., On countably compact, perfectly normal spaces, J. London Math. Soc, to appear.Google Scholar
26. Ross, K. A. and Stone, A. H., Products of separable metric spaces, Amer. Math. Monthly 71 (1964), 398403.Google Scholar
27. Smirnov, Yu. M., On normally disposed sets of normal spaces, Mat. Sb. (N. S.) 29 (1951), 173176. (Russian)Google Scholar
28. Stone, A. H., Paracompactness and product spaces, Bull. Amer. Math. Soc. 54 (1948), 977982.Google Scholar
29. Tamano, H., A note on the pseudocompactness of the product of two spaces, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. 33 (1960/61), 225230.Google Scholar
30. Tamano, H., On compactifications, J. Math. Kyoto Univ. 1-2 (1962), 161193.Google Scholar
31. Veksler, A. I., P'-points, P'-sets, P'-spaces. A new class of order-continuous measures and functional Dokl. Akad. Nauk SSSR 212 (1973), 789-792; Soviet Math. Dokl. 14 (1973), 14451450.Google Scholar
32. Weiss, W. A. R., Some applications of set theory to topology, Ph.D thesis, University of Toronto, 1975.Google Scholar
33. Willard, S., General topology (Addison Wesley, Reading, Mass., 1970).Google Scholar