Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T17:15:02.475Z Has data issue: false hasContentIssue false

Strong Asymptotics of Hermite-PadéApproximants for Angelesco Systems

Published online by Cambridge University Press:  20 November 2018

Maxim L. Yattselev*
Affiliation:
Department of Mathematical Sciences, Indiana University-Purdue University Indianapolis, 402 North Blackford Street, Indianapolis, IN 46202, USA e-mail: maxyatts@math.iupui.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this work type II Hermite-Padé approximants for a vector of Cauchy transforms of smooth Jacobi-type densities are considered. It is assumed that densities are supported on mutually disjoint intervals (an Angelesco system with complex weights). The formulae of strong asymptotics are derived for any ray sequence of multi-indices.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2016

References

[1] Angelesco, A., Sur deux extensions des fractions continues algébraiques. Comptes Rendus de l'Académie des Sciences, Paris, 168(1919), 262265.Google Scholar
[2] Aptekarev, A. I., Asymptotics of simultaneously orthogonal polynomials in the Angelesco case. Mat. 136(1988), 56-84,1988; English transi, in Math. USSR Sb. 64(1989).Google Scholar
[3] Aptekarev, A. I., Sharp constant for rational approximation of analytic functions. Mat. Sb. 193(2002), no. 1, 3-72; English transi, in Math. Sb. 193(2002), no. 1-2,172.http://dx.doi.Org/10.4213/sm619 Google Scholar
[4] Aptekarev, A. I. and Lysov, V. G., Asymptotics ofHermite-Padé approximants for systems of Markov functions generated by cyclic graphs. Mat. Sb. 201(2010), no. 2, 2978.http://dx.doi.Org/10.4213/sm7515 Google Scholar
[5] Baratchart, L. and Yattselev, M., Convergent interpolation to Cauchy integrals over analytic arcs with Jacobi-type weights. Int. Math. Res. Not. 2010, no. 22, 42114275.Google Scholar
[6] Bogatskiy, A., Claeys, T., Its, A. R., Hankel determinant and orthogonal polynomials for a Gaussian weight with a discontinuity at the edge. arxiv:1507.01710 Google Scholar
[7] Deift, P. A., Orthogonal polynomials and random matrices: a Riemann-Hilbert approach. Courant Lectures in Mathematics, 3, New York University, Courant Institute of Mathematical Sciences,New York, American Mathematical Society, Providence, RI, 1999.Google Scholar
[8] Deift, P., Its, A., and Krasovsky, I., Asymptotics ofToeplitz, Hankel, and Toeplitz+Hankel determinants with Fisher-Hartwig singularities. Ann. of Math. 174(2011), no. 2,12431299. http://dx.doi.Org/10.4007/annals.2011.174.2.12 Google Scholar
[9] Deift, P., Kriecherbauer, T., McLaughlin, K. T.-R., Venakides, S., and Zhou, X. , Strong asymptotics for polynomials orthogonal with respect to varying exponential weights. Comm. Pure Appl. Math. 52 (1999), no. 12, 14911552.http://dx.doi.Org/10.1002/(SICI)1097-0312(199912)52:12491 ::AID-CPA2>3.3.CO;2-R 3.3.CO;2-R>Google Scholar
[10] Deift, P. and Zhou, X., A steepest descent method for oscillatory Riemann-Hilbert problems.Asymptotics for the mKdV equation. Ann. of Math. 137(1993), no. 2, 295368.http://dx.doi.org/10.2307/2946540 Google Scholar
[11] Fokas, A. S., Its, A. R., and Kitaev, A. V., Discrete Panlevé equations and their appearance in quantum gravity. Comm. Math. Phys. 142(1991), no. 2, 313344.http://dx.doi.org/10.1007/BF02102066 Google Scholar
[12] Fokas, A. S., The isomonodromy approach to matrix models in 2D quantum gravitation. Comm. Math.Phys. 147(1992), no. 2, 395430.http://dx.doi.Org/10.1007/BF02096594 Google Scholar
[13] Gakhov, F. D., Boundary value problems. Dover Publications, Inc., New York, 1990.Google Scholar
[14] Gonchar, A. A. and Rakhmanov, E. A., On convergence of simultaneous padé approximants for systems of functions of Markov type.(Russian) Trudy Mat. Inst. Steklov 157(1981), 31-48, 234; English translation in Proc. Steklov Inst. Math. 157(1983).Google Scholar
[15] Its, A. R.,Kuijlaars, A. B. J., and Ôstensson, J., Critical edge behavior in unitary random matrix ensembles and the thirty-fourth Painlevé transcendent. Int. Math. Res. Not. IMRN 2008, no. 9, Art. ID rnnO17.http://dx.doi.Org/10.1093/imrn/rnn017 Google Scholar
[16] Its, A. R., Asymptotics for a special solution of the thirty forth Painlevé equation. Nonlinearity 22(2009), no. 7, 15231558.http://dx.doi.Org/10.1088/0951-7715/22/7/002 Google Scholar
[17] Kamvissis, S., McLaughlin, K. T.-R., and Miller, P. D., Semidassical soliton ensembles for the focusin nonlinear Schrôdinger equation. Annals of Mathematics Studies, 154, Princeton University Press, Princeton, NJ, 2003.Google Scholar
[18] Kuijlaars, A. B. J., McLaughlin, K. T.-R., Van Assche, W., and Vanlessen, M. , The Riemann-Hilbert approach to strong asymptotics for orthogonal polynomials on [-1,1]. Adv. Math. 188(2004), no. 2, 337398. http://dx.doi.Org/10.1016/j.aim.2003.08.015 Google Scholar
[19] Markov, A. A., Deux démonstrations de la convergence de certaines fractions continues. Acta Math. 19(1895), 93104. http://dx.doi.org/10.1007/BF02402872 Google Scholar
[20] Foulquié Moreno, A., Martinez-Finkelshtein, A., and Sousa, V. L., On a conjecture of A. Magnus concerning the asymptotic behavior of the recurrence coefficients ofthe generalized facobi polynomials. J. Approx. Theory 162(2010), no. 4, 807831. http://dx.doi.Org/10.1016/j.jat.2OO9.08.006 Google Scholar
[21] Foulquié Moreno, A., Asymptotics of orthogonal polynomials for a weight with a jump on [-1,1]. Constr. Approx. 33 (2011), no. 2, 219263. http://dx.doi.org/10.1007/s00365-010-9091-x Google Scholar
[22] Nikishin, E. M., A system of Markov functions. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1979, no. 4, 60-63,103; Translated in Moscow University Mathematics Bulletin 34(1979), no. 4, 6366.Google Scholar
[23] Nikishin, E. M., Simultaneous padé approximants. Mat. Sb. (N. S.) 113(155)(1980), no. 4(12), 499519, 637.Google Scholar
[24] Nuttall,Padé, J. polynomial asymptotics from a singular integral equation. Constr. Approx. 6(1990), no. 2, 157166. http://dx.doi.org/10.1007/BF01889355 Google Scholar
[25] Privalov, I.I., Boundary properties of analytic functions.(Russian) Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1950.Google Scholar
[26] Ransford, T., Potential theory in the complex plane. London Mathematical Society Student Texts, 28, Cambridge University Press, Cambridge, 1995.http://dx.doi.Org/10.1017/CBO9780511623776 Google Scholar
[27] Saffand, E. B. Totik, V., Logarithmic potentials with external fields. Grundlehren der Math. Wissenschaften, 316, Springer-Verlag, Berlin, 1997.http://dx.doi.Org/10.1007/978-3-662-03329-6 Google Scholar
[28] Stahl, H. and Totik, V., General orthogonal polynomials. Encyclopedia of Mathematics and its Applications, 43, Cambridge University Press, Cambridge, 1992. http://dx.doi.org/10.1017/CBO9780511759420 Google Scholar
[29] Van Assche, W., Geronimo, J. S., and Kuijlaars, A. B. J., Riemann-Hilbert problems for multiple orthogonal polynomials. In: Special functions 2000: current perspective and future directions (Tempe, AZ), NATO Sci. Ser. II Math. Phys. Chem., 30, Kluwer Acad. Publ., Dordrecht, 2001, pp. 2359.Google Scholar
[30] Vanlessen, M., Strong asymptotics of the recurrence coefficients of orthogonal polynomials associated to the generalized facobi weight. J. Approx. Theory 125(2003), no. 2,198237. http://dx.doi.Org/10.1016/j.jat.2003.11.005 Google Scholar
[31] Verblunsky, S., On positive harmonic functions. Proc. London Math. Soc. S2-40(1936), no. 1, 290320.http://dx.doi.Org/10.1112/plms/s2-40.1.290 Google Scholar
[32] Xu, S.-X. and Zhao, Y.-Q., Painlevé XXXIV asymptotics of orthogonal polynomials for the Gaussian weight with a jump at the edge. Stud. Appl. Math. 127(2011), no. 1, 67105. http://dx.doi.Org/10.1111/J.1467-9590.2010.00512.x Google Scholar
[33] Zverovich, E. I., Boundary value problems in the theory of analytic functions in Holder classes on Riemann surfaces.(Russian), Uspehi Mat. Nauk 26(1971), no. 1(157), 113179.Google Scholar