Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T04:16:45.610Z Has data issue: false hasContentIssue false

Sur Les Intégrales Orbitales Tordues Pour Les Groupes Linéaires: Un Lemme Fondamental

Published online by Cambridge University Press:  20 November 2018

J.-L. Waldspurger*
Affiliation:
Université Paris 7, U.F.R. de Mathématiques, 2, place Jussieu, Tour 45/55-5ième étage, 75251 Paris cedex 05, France
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1991

References

[BDKV] Bernstein, J., Deligne, P., Kazhdan, D., Vignéras, M-F., Représentations des groupes réductifs sur un corps local. Hermann, Travaux en cours, Paris, 1984.Google Scholar
[BZ] Berstein, J., Zelevinsky, A.V., Induced representations of reductive p-adic groups I, Ann. Se. ENS 10 (1977), 441472.Google Scholar
[Ca] Carayol, H., Représentations cuspidales du groupe linéaire, Ann. Se. ENS 17(1984).Google Scholar
[Cl] Clozel, L., The fundamental lemma for stable base change, prépublication.Google Scholar
[Ha] Hales, T., Unipotent representations and unipotent classes in SL(n), prépublication.Google Scholar
[He] Henniart, G., On the local Langlands conjecture for GLn: the cyclic case, Annals of Math. 123(1986), 145203.Google Scholar
[Ho] Howe, R., Tamely ramified supercuspidal representations of GLn , Pac. J. of Math. 73(1977), 437460.Google Scholar
[Kl] Kazhdan, D., On lifting, in Lie group representations II, Springer LN 1041(1984), 209249.Google Scholar
[K2] Kazhdan, D., Cuspidal geometry of p-adic groups, J, . d'Analyse Math. 47(1986), 136.Google Scholar
[LL] Labesse, J-P., Langlands, R.P., L-indistinguishability for SL(2), Can. J. Math. 31(1979), 726785.Google Scholar
[L] Lusztig, G., Affine Hecke algebras and their graded version, J. AMS.Google Scholar
[W] Waldspurger, J-L., Sur les germes de Shalika pour les groupes linéaires, Math. Annalen 283(1989), 199— 221.Google Scholar
[Z] Zelevinsky, A.V., Representations of finite classical groups, Springer LN 869(1981 ).Google Scholar