Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T20:56:28.819Z Has data issue: false hasContentIssue false

Tannakian Categories With SemigroupActions

Published online by Cambridge University Press:  20 November 2018

Alexey Ovchinnikov
Affiliation:
CUNY Queens College, Department of Mathematics, 65-30 Kissena Blvd, Queens, NY 11367, USAand , CUNY Graduate Center, Department of Mathematics,365 Fifth Avenue, New York, NY 10016, USA e-mail: aovchinnikov@qc.cuny.edu
Michael Wibmer
Affiliation:
RWTH Aachen, 52056, Aachen, Germany and , University of Pennsylvania, Department of Mathematics, 209 South 33rd Street, Philadelphia, PA 19104, USA e-mail: wibmer@math.upenn.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A theorem of Ostrowski implies that $\log \left( x \right),\,\log \left( x+1 \right),\,.\,.\,.$ are algebraically independent over $\mathbb{C}\left( x \right)$. More generally, for a linear differential or difference equation, it is an important problem to find all algebraic dependencies among a non-zero solution $y$ and particular transformations of $y$, such as derivatives of $y$ with respect to parameters, shifts of the arguments, rescaling, etc. In this paper, we develop a theory of Tannakian categories with semigroup actions, which will be used to attack such questions in full generality, as each linear differential equation gives rise to a Tannakian category. Deligne studied actions of braid groups on categories and obtained a finite collection of axioms that characterizes such actions to apply them to various geometric constructions. In this paper, we find a finite set of axioms that characterizes actions of semigroups that are finite free products of semigroups of the form ${{\mathbb{N}}^{n}}\,\times \,\mathbb{Z}/{{n}_{1}}\mathbb{Z}\,\times \,.\,.\,.\,\mathbb{Z}/{{n}_{r}}\mathbb{Z}$ on Tannakian categories. This is the class of semigroups that appear in many applications.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2017

References

[1] Baumslag, G. and Solitar, D., Some two-generator one relator non-Hopfian groups. Bull. Amer. Math. Soc. 68(1962), 199201.http://dx.doi.org/10.1090/S0002-9904-1962-10745-9 Google Scholar
[2] Cohn, R. M., Difference algebra. Interscience Publishers, New York, 1965.Google Scholar
[3] Deligne, P., Catégories tannakiennes. In: The Grothendieck Festschrift. II. Progr. Math. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 111195.http://dx.doi.Org/10.1007/978-0-81 76-4575-5_3 Google Scholar
[4] Deligne, P., Action du groupe des tresses sur une catégorie. Invent. Math. 128(1997), 159175. http://dx.doi.org/10.1007/s002220050138 Google Scholar
[5] Deligne, P. and Milne, J., Tannakian categories. In: Hodge cycles, motives, and Shimura varieties. Lecture Notes in Mathematics, 900. Springer-Verlag, Berlin, 1982, pp. 101228. http://www.jmilne.org/math/xnotes/tc.pdf. Google Scholar
[6] Di Vizio, L, Hardouin, C. , and Wibmer, M., Difference Galois theory of linear differential equations. Adv. Math. 260(2014), 158.http://dx.doi.org/10.1016/j.aim.2o14.04.005 Google Scholar
[7] Di Vizio, L, Difference algebraic relations among solutions of linear differential equations. J. Inst. Math. Jussieu 2016.http://dx.doi.Org/10.101 7/S147474801 5000080 Google Scholar
[8] Drinfeld, V., Gelaki, S., Nikshych, D., and Ostrik, V., On braided fusion categories. I. Selecta Math. (N.S.) 16(2010), no. 1,1119.http://dx.doi.org/10.1007/s00029-010-001 7-z Google Scholar
[9] Frenkel, E., Langlands correspondence for loop groups. Cambridge Studies in Advanced Mathematics, 103. Cambridge University Press, Cambridge, 2007.http://math.berkeley.edu/-frenkel/loop.pdf. Google Scholar
[10] Gillet, H., Gorchinskiy, S., andOvchinnikov, A., Parameterized Picard-Vessiot extensions and Atiyah extensions. Adv. Math. 238(2013), 322411.http://dx.doi.Org/10.1016/j.aim.2013.02.006 Google Scholar
[11] Kamensky, M., Tannakian formalism over fields with operators. Internat. Math. Res. Notices 24(2013), 55715622.http://dx.doi.Org/10.1093/imrn/rns190 Google Scholar
[12] Kamensky, M., Model theory and the Tannakian formalism. Trans. Amer. Math. Soc. 367(2015)10951120.http://dx.doi.org/10.1090/S0002-9947-2014-06062-5 Google Scholar
[13] Koornwinder, T. H., Group theoretic interpretations of Askey's scheme of hypergeometric orthogonal polynomials. In: Orthogonal polynomials and their applications. Lecture Notes in Mathematics, 1329. Springer, 1988, pp. 4672.http://dx.doi.Org/10.1 OO7/BFbOO83353 Google Scholar
[14] Levin, A., Difference algebra. Algebra and Applications, 8. Springer, New York, 2008.http://dx.doi.org/10.1007/978-1-4020-6947-5 Google Scholar
[15] Mac Lane, S., Categories for the working mathematician. Springer, New York, 1978.http://dx.doi.org/10.1007/978-1-4757-4721-8 Google Scholar
[16] Minchenko, A. and Ovchinnikov, A., Zariski closures of reductive linear differential algebraic groups. Adv. Math. 227(2011), no. 3, 11951224.http://dx.doi.Org/10.1016/j.aim.2O11.03.002 Google Scholar
[17] Minchenko, A., Ovchinnikov, A., and Singer, M. F., Unipotent differential algebraic groups as parameterized differential Galois groups. J. Inst. Math. Jussieu 13(2014), no. 4, 671700.http://dx.doi.Org/10.1017/S1474748013000200 Google Scholar
[18] Ostrowski, A., Sur les relations algébriques entre les intégrales indéfinies. Acta Math. 78(1946), no. 1,315318.http://dx.doi.org/10.1007/BF02421605 Google Scholar
[19] Ovchinnikov, A., Tannakian approach to linear differential algebraic groups. Transform. Groups 13(2008), no. 2, 413446.http://dx.doi.org/10.1007/s00031-008-9010-4 Google Scholar
[20] Ovchinnikov, A., Tannakian categories, linear differential algebraic groups, and parametrized linear differential equations. Transform. Groups 14(2009), no. 1,195223.http://dx.doi.org/10.1007/s00031-008-9042-9 Google Scholar
[21] Ovchinnikov, A., Differential Tannakian categories. J. Algebra 321(2009), no. 10, 30433062. http://dx.doi.Org/10.1016/j.jalgebra.2OO9.O2.008 Google Scholar
[22] Ovchinnikov, A., Difference integrability conditions for parameterized linear difference and differential equations. Adv. Appl. Math. 53(2014), 6171.http://dx.doi.Org/10.1016/j.aam.2013.09.007 Google Scholar
[23] Ovchinnikov, A. and Wibmer, M., a-Galois theory of linear difference equations. Internat. Math. Res. Notices 2015 (12): 39624018, 2015.http://dx.doi.Org/10.1093/imrn/rnu060 Google Scholar
[24] Saavedra Rivano, N., Catégories Tannakiennes. Lecture Notes in Mathematics, 265. Springer-Verlag, Berlin, 1972. http://dx.doi.Org/10.1OO7/BFbOO59108 Google Scholar
[25] van der Put, M. and Singer, M. F., Galois theory of linear differential equations. Fundamental Principles of Mathematical Sciences, 328. Springer-Verlag, Berlin, 2003.http://dx.doi.org/10.1007/978-3-642-55750-7 Google Scholar
[26] Vilenkin, N. J.and Klimyk, A. U., Representation of Lie groups and special functions. Simplest Lie Groups, Special Functions and Integral Transforms, vol. 1. Springer, Netherlands, 1991.http://dx.doi.org/10.1007/978-94-011-3538-2 Google Scholar
[27] Waterhouse, W. C., Introduction to affine group schemes. Graduate Texts in Mathematics, 66. Springer-Verlag, New York, 1979.http://dx.doi.org/10.1007/978-1-4612-6217-6 Google Scholar
[28] Wibmer, M., Existence of d-parameterized Picard-Vessiot extensions over fields with algebraically closed constants. J. Algebra 361(2012), 163171.http://dx.doi.Org/10.1016/j.jalgebra.2012.03.035 Google Scholar