Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T11:56:29.068Z Has data issue: false hasContentIssue false

Tensor Products of Banach Algebras

Published online by Cambridge University Press:  20 November 2018

Bernard R. Gelbaum*
Affiliation:
University of Minnesota
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper is concerned with a generalization of some recent theorems of Hausner (1) and Johnson (4; 5). Their result can be summarized as follows: Let G be a locally compact abelian group, A a commutative Banach algebra, B1 = Bl(G,A) the (commutative Banach) algebra of A-valued, Bochner integrable junctions on G, 3m1the maximal ideal space of A, m2the maximal ideal space of L1(G) [the [commutative Banach] algebra of complex-valued, Haar integrable functions on G, m3the maximal ideal space of B1. Then m3and the Cartesian product m1 X m2are homeomorphic when the spaces mi, i = 1, 2, 3, are given their weak* topologies. Furthermore, the association between m3and m1 X m2is such as to permit a description of any epimorphism E3: B1B1/m3 in terms of related epimorphisms E1: AA/M1 and E2:L1(G) → Ll(G)/M2, where M1 is in mi i = 1, 2, 3.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1959

References

0. Bourbaki, N., Éléments de mathématique, VII, Première partie, Les Structures fondementales de l'analyse, livre II, Algèbre, chapitre III, Algèbre multilineaire, Act. Sci. et Indust., 1044 (Paris, 1948), 30-8.Google Scholar
1. Hausner, A., Abstract 493, Bull. Amer. Math. Soc. (July, 1956), 383.Google Scholar
2. Hausner, A., Proc. Amer. Math. Soc, 8 (1957), 246-9.Google Scholar
3. Hausner, A., The Tauberian heorem for group algebras of vector-valued functions, Pacific J. Math., 7 (1957), 1603-10.Google Scholar
4. Johnson, G. P., Abstract 458, Bull. Amer. Math. Soc. (July, 1956), 366.Google Scholar
5. Johnson, G. P. , To appear in Trans. Amer. Math. Soc.Google Scholar
6. Schatten, R., A theory of cross-spaces (Princeton, 1950).Google Scholar
7. Segal, I., The group algebra of a locally compact group, Trans. Amer. Math. Soc, 61 (1947), 69105.Google Scholar
8. Willcox, A. B., Note on certain group algebras, Proc. Amer. Math. Soc, 7 (1956), 874–9.Google Scholar