No CrossRef data available.
Article contents
Topological Reflection Groups
Published online by Cambridge University Press: 20 November 2018
Extract
Let G be a closed subgroup of one of the classical compact groups 0(n), U(n), Sp(n). By a reflection we mean a matrix in one of these groups which is conjugate to the diagonal matrix diag (–1, 1, …, 1). We say that G is a topological reflection group (t.r.g.) if the subgroup of G generated by all reflections in G is dense in G.
It was shown recently by Eaton and Perlman [5] that, in case of 0(n), the whole group 0(n) is the unique infinite irreducible t.r.g. In this paper we solve the analogous problem for U(n) and Spin). Our method of proof is quite different from the one used in [5]. We treat simultaneously all the three cases.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1980