Published online by Cambridge University Press: 20 November 2018
Central to the study of simple infinite dimensional $g\ell (n,\,\mathbb{C})$-modules having finite dimensional weight spaces are the torsion free modules. All degree 1 torsion free modules are known. Torsion free modules of arbitrary degree can be constructed by tensoring torsion free modules of degree 1 with finite dimensional simple modules. In this paper, the central characters of such a tensor product module are shown to be given by a Pieri-like formula, complete reducibility is established when these central characters are distinct and an example is presented illustrating the existence of a nonsimple indecomposable submodule when these characters are not distinct.