Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T03:59:56.072Z Has data issue: false hasContentIssue false

Traces, Cross-Ratios and 2-Generator Subgroups of SU(2, 1)

Published online by Cambridge University Press:  20 November 2018

Pierre Will*
Affiliation:
Institut Fourier, 100 rue des Maths, 38402 StMartin d’Hères, France email: pierre.will@ujf-grenoble.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this work, we investigate how to decompose a pair $\left( A,\,B \right)$ of loxodromic isometries of the complex hyperbolic plane $\mathbf{H}_{\mathbb{C}}^{2}$ under the form $A\,=\,{{I}_{1}}{{I}_{2}}$ and $B\,=\,{{I}_{3}}{{I}_{2}}$, where the ${{I}_{k}}$'s are involutions. The main result is a decomposability criterion, which is expressed in terms of traces of elements of the group $\left\langle A,\,B \right\rangle $.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2009

References

[1] Beardon, A., The Geometry of Discrete Groups. Graduate Texts in mathematics 91. Springer-Verlag, New York, 1983.Google Scholar
[2] Deraux, M., Falbel, E., and Paupert, J., New constructions of fundamental polyhedra in complex hyperbolic space. Acta Math. 194(2005), no. 2, 155–201.Google Scholar
[3] Falbel, E., Spherical CR structures on the complement of the figure eight knot with discrete holonomy. J. Differential Geom. 79(2008), no. 1, 69–110.Google Scholar
[4] Falbel, E. and Koseleff, P. V., Rigidity and flexibility of triangle groups in complex hyperbolic geometry. Topology 41(2002), no. 4, 767–786.Google Scholar
[5] Falbel, E. and Parker, J., The moduli space of the modular group in complex hyperbolic geometry. Inv. Math. 152(2003), no. 1, 57–88..Google Scholar
[6] Falbel, E. and Wentworth, R., Compacité à la Mumford-Mahler pour les groupes fuchsiens dans un espace symétrique de rang un. Preprint available at www.insitut.math.jussieu.fr/falbel.Google Scholar
[7] Falbel, E. and Zocca, V., A Poincaré's polyhedron theorem for complex hyperbolic geometry. J. Reine Angew. Math. 516(1999), 133–158.Google Scholar
[8] Fenchel, W., Elementary Geometry in Hyperbolic Space. de Gruyter Studies in Mathematics 11. Walter de Gruyter, Berlin, 1989.Google Scholar
[9] Fogg, N. P., Substitutions in Dynamics, Arithmetics and Combinatorics. Lecture Notes in Mathematics 1794. Springer-Verlag, Berlin, 2002.Google Scholar
[10] Fricke, R. and Klein, F., Vorlesungen über die Theorie der Automorphen Funktionen. Tuebner, Stuttgart, 1965 Google Scholar
[11] Gilman, J., Two-Generator Discrete Subgroups of PSL(2, R). Mem. Amer. Math. Soc. 117(1995), no. 561.Google Scholar
[12] Goldman, W., An exposition of results of Fricke and Vogt. www.math.umd.edu/wmg.Google Scholar
[13] Goldman, W., Topological components of spaces of representations. Invent. Math. 93(1988), no. 3, 557–607.Google Scholar
[14] Goldman, W., Complex Hyperbolic Geometry. Oxford University Press, Oxford, 1999.Google Scholar
[15] Goldman, W. and Millson, J., Local rigidity of discrete groups acting on complex hyperbolic space. Invent. Math. 88(1987), no. 3, 495–520.Google Scholar
[16] Goldman, W. and Parker, J., Complex hyperbolic ideal triangle groups. J. Reine Angew. Math. 425(1992), 71–86.Google Scholar
[17] Gusevskii, N. and Parker, J. R., Complex hyperbolic quasi-fuchsian groups and Toledo's invariant. Geom. Dedicata 97(2003), 151–185.Google Scholar
[18] Khoi, V. T., On the SU(2, 1) representation space of the Brieskorn homology spheres. J. Math. Sci. Univ. Tokyo 14(2007), no. 4, 499–510.Google Scholar
[19] Koranyi, A. and Reimann, H. M., The complex cross-ratio on the Heisenberg group. Enseign. Math. 33(1987), no. 2-3, 291–300.Google Scholar
[20] Lawton, S., Generators, relations and symmetries in pairs of 3x3 unimodular matrices. J. Algebra 313(2007), no. 2, 782–801.Google Scholar
[21] Mostow, G. D., On a remarkable class of polyhedra in complex hyperbolic space. Pacific J. Math. 86(1980), no. 1, 171–276.Google Scholar
[22] Parker, J. and Platis, I., Complex hyperbolic Fenchel-Nielsen coordinates. Topology 47(2008), no. 2, 101–135.Google Scholar
[23] Pratoussevitch, A., Traces in complex hyperbolic triangle groups. Geom. Dedicata 111(2005), 159–185.Google Scholar
[24] Procesi, C., The invariant theory of n × n matrices. Advances in Math. 19(1976), no. 3, 306–381.Google Scholar
[25] Sandler, H., Traces on SU(2, 1) and complex hyperbolic ideal triangle groups. Algebras Groups Geom. 12(1995), no. 2, 139–156.Google Scholar
[26] Schaffhauser, F., Decomposable representations and Lagrangian submanifolds of moduli spaces associated to surface groups. Math. Ann. 342(2008), no. 2, 405–447.Google Scholar
[27] Schaffhauser, F., Representations of the fundamental group of an l-punctured sphere generated by products of Lagrangian involutions. Canad. J. Math. 59(2006), no. 4, 845–879.Google Scholar
[28] Schwartz, R. E., Degenerating the complex hyperbolic ideal triangle groups. Acta Math. 186(2001), no. 1, 105–154.Google Scholar
[29] Schwartz, R. E., Ideal triangle groups, dented tori, and numerical analysis. Ann. of Math. 153(2001), no. 3, 533–598.Google Scholar
[30] Sikora, A. S., SLn-character varieties as spaces of graphs. Trans. Amer. Math. Soc. 353(2001), no. 7, 2773–2804.Google Scholar
[31] Toledo, D., Representations of surface groups in complex hyperbolic space. J. Differential Geom. 29(1989), no. 1, 125–133.Google Scholar
[32] Vogt, H., Sur les invariants fondamentaux deséquations différentielles linéaires du second ordre. Ann. Sci. Ècole Norm. Sup. 6(1886), 3–71.Google Scholar
[33] Z. X., Wen, Relations polynomiales entre les traces de produits de matrices. C. R. Acad. Sci Paris Sèr I Math. 318(1994), no. 2, 99–104.Google Scholar
[34] Will, P.. Groupes libres, groupes triangulaires et toreépointé dans PU(2, 1). Thèse de l’université Paris VI.Google Scholar
[35] Will, P., The punctured torus and Lagrangian triangle groups in PU(2, 1). J. Reine Angew. Math. 602(2007), 95–121.Google Scholar